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Macrophages and autophagy are intricately linked, both playing vital roles

in maintaining homeostasis and responding to disease. Macrophages,

known for their ‘eating’ function, rely on a sophisticated digestion system

to process a variety of targets, from apoptotic cells to pathogens. The con-

nection between macrophages and autophagy is established early in their

development, influencing both differentiation and mature functions. Autop-

hagy regulates essential immune functions, such as inflammation control,

pathogen clearance, and antigen presentation, linking innate and adaptive

immunity. Moreover, it modulates cytokine production, ensuring a bal-

anced inflammatory response that prevents excessive tissue damage. Autop-

hagy also plays a critical role in macrophage polarization, influencing their

shift between pro-inflammatory and anti-inflammatory states. This review

explores the role of autophagy in macrophages, emphasizing its impact

across various tissues and pathological conditions, and detailing the cellu-

lar and molecular mechanisms by which autophagy shapes macrophage

function.

Introduction

Macrophages and autophagy are intimately bound to

their etiology, sharing some kind of eating function

profoundly linked to their biological role in both physi-

ology and disease. As specialized phagocytes, macro-

phages require a sophisticated digestion apparatus to

process their diverse substrates. The macrophage diet is

diverse, encompassing apoptotic cells and cellular

debris in sterile immune responses, as well as pathogens

in infectious settings, through a process called

‘phagocytosis’. Typically, macrophages can phagocytize

pathogens and present their antigens to T lymphocytes

via the major histocompatibility complex (MHC). They

also clear apoptotic cells and cellular debris through a

process known as ‘efferocytosis’ [1]. The apoptosis sig-

nals are recognized by a variety of receptors, which trig-

ger intracellular signaling cascades. This leads to the

engulfment of the target into a phagosome, where enzy-

matic digestion occurs within lysosomes [2].
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Eukaryotic cells possess an intrinsic ability to initi-

ate a specific process for digesting portions of their

cytoplasm; this bulk degradative program is known as

macroautophagy or simply autophagy. Through

autophagy, cells can remove intracellular pathogens,

damaged organelles, harmful components, and recycle

macronutrients to fuel new biosynthetic pathways [3].

The capture of these materials is facilitated by

double-membraned vesicles called autophagosomes,

which fuse with lysosomes to degrade their contents.

Several conserved protein factors are essential for autop-

hagy, with the most critical referred to as ‘core’ autop-

hagy genes. Autophagy is triggered by the inhibition of

mTOR, the best-characterized negative regulator of this

process. Upon mTOR inhibition, the Unc51-like kinase

1/2 (ULK1/2) complex is recruited to specialized regions

of the endoplasmic reticulum (ER) called omegasomes

[4–6]. At these sites, the nucleation of the phagophore is

promoted by the recruitment of components from the

class III phosphatidylinositol-3-kinase (PI3KC3) com-

plex I [7,8]. This complex catalyzes the production of

phosphatidylinositol-3-phosphate (PI3P), a lipid that

attracts PI3P-binding autophagy effectors. These effec-

tors act as scaffolds, anchoring the ATG512/16 complex

to the outer membrane of the phagophore [9,10]. The

ATG512/16 complex facilitates the conjugation of

microtubule-associated protein light chain 3 (LC3) and

c-aminobutyric acid receptor-associated proteins

(GABARAPs) to phosphatidylethanolamine on the

phagophore membrane, promoting its elongation and

eventual closure [7]. The final stage of autophagy, the

fusion of autophagosomes with lysosomes for cargo

degradation, is coordinated by specialized proteins

[11,12].

The link between macrophages and autophagy

begins early in macrophage development, significantly

impacting their ability to initiate and execute their dif-

ferentiation process, yet also impacting mature macro-

phage behavior in a multitude of contexts. After

exiting the bone marrow, monocytes typically differen-

tiate into macrophages upon entering tissues. In the

absence of differentiation signals, monocytes undergo

programmed cell death. However, the presence of dif-

ferentiation signals initiates a process involving the

inhibition of caspase-3 operated by the autophagy

machinery. This has been demonstrated through exper-

iments using knockdown of autophagy master regula-

tors and autophagy inhibitors [13]. Indeed, under these

conditions, circulating monocytes underwent apoptosis

even in the presence of macrophage differentiation

signals.

In macrophages, autophagy intersects with several

critical immune functions. One of its primary roles in

these phagocytes is to regulate inflammation and path-

ogen clearance. Through a process known as xeno-

phagy, macrophages use the autophagy machinery to

degrade intracellular pathogens, thereby playing a

direct role in host defense [3]. Additionally, autophagy

is involved in antigen presentation, aiding in the pro-

cessing and presentation of antigens to T cells, which

links innate and adaptive immunity [14].

Autophagy also modulates cytokine production,

which is essential for controlling the inflammatory

response [15,16]. For instance, autophagy-related pro-

teins (ATGs) can influence the production of key cyto-

kines such as IL1b and TNFa [15,17,18]. By regulating

the degradation of inflammasome components and

reactive oxygen species (ROS), autophagy helps main-

taining a balance between pro-inflammatory and anti-

inflammatory responses, which is crucial for preventing

excessive tissue damage during infection or injury

[19,20]. Within this context, the role of autophagy in

macrophage differentiation and polarization is

noteworthy. Macrophages can polarize into pro-

inflammatory (M1) or anti-inflammatory (M2) pheno-

types, depending on the signals they receive and the

surrounding environment [21,22]. Autophagy influ-

ences the polarization process by regulating key signal-

ing pathways and metabolic processes.

In this review, we will discuss the role of autophagy

in macrophages, with a special focus on macrophage

autophagy across different tissues and organs and in

distinct pathological conditions. We will highlight the

cellular and molecular mechanisms by which autop-

hagy determines macrophage functioning, and how the

alteration of the autophagic machinery can influence

macrophage behavior.

Macrophage autophagy in antigen
presentation

The complex interplay between macrophage activation

and autophagy plays a crucial role in the immune

response to bacterial infections and the maintenance of

cellular homeostasis. As a form of specialized phago-

cytes, macrophages are responsible for both infective

and sterile immune responses. When functioning as

antigen-presenting cells (APCs), macrophages predomi-

nantly present antigens on MHC class II (MH-CII)

molecules. This process can function through distinct

processing pathways, including autophagy [23–26].
Within this context, a distinct process named

LC3-associated phagocytosis, play a fundamental role,

being responsible of the microbe digestion, and also

stabilizing and maintaining antigens for longer periods,

thus prolonging MHC-II presentation [27].
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The exact process by which intracellular and extra-

cellular pathogens are delivered to the autophagic

machinery for their degradation is still under investiga-

tion, but some hypotheses point at mechanisms that

are similar to those characterizing selective autophagy

of endogenous cargoes [28].

One possible process that links the autophagy of

extracellular pathogens to MHC class II-mediated

antigen presentation is provided in Fig. 1. In this view,

macrophages recognize bacteria through pattern recog-

nition receptors (PRRs) such as toll-like receptors, that

have been shown to induce the formation of phagoly-

sosomes [29], and scavenger receptors. These receptors

bind to pathogen-associated molecular patterns

(PAMPs) on the bacterial surface [30]. Once attached,

the macrophage engulfs the bacteria by extending its

plasma membrane around the bacterium, thus forming

a phagosome. The phagosome can then fuse with lyso-

somes, for the degradation of the internalized cargo,

to produce small peptides that can be loaded onto the

MHC-II molecule [31].

Class II molecules are synthesized in the ER and

associate with the invariant chain (Ii), which prevents

premature binding of peptides. In the

endosomal/lysosomal compartments, called MHC-II-

containing compartment (MIIC) in APCs, the invari-

ant chain is cleaved, leaving a small fragment called

CLIP (class II-associated invariant chain peptide) in

the peptide-binding groove. Within the MIIC,

HLA-DM facilitates the exchange of CLIP for the

peptides, allowing them to bind to the MHC-class II

molecules. The peptide–MHC-class II complex is then

transported to the cell surface via vesicles. On the cell

surface, the peptide–MHC class II complex is pre-

sented to CD4+ T helper cells [32]. This interaction is

crucial for the activation of T cells, which then coordi-

nate the immune response by secreting cytokines, help-

ing B cells producing antibodies, and recruiting other

immune cells.

It has been demonstrated that peptides loaded onto

class II molecules not only derive from internalized

external antigens. Indeed, a 20% of these peptides

Fig. 1. Mechanism of macrophage phagocytosis for the antigen presentation. Macrophages recognize pathogen-associated molecular

patterns (PAMPs) on microbes through pattern recognition receptors (PRRs) and phagocytize them. Phagocytized material is engulfed inside

a phagosome, which fuses with lysosomes for the cargo digestion by lysosomal enzymes. This process helps in forming small peptides to

be loaded onto MHC class II molecules for antigen presentation to T cells. Precursors of MHC-II molecules from the endoplasmic reticulum

are transported via vesicles to the endosomal compartment known as MHC class II-containing compartment (MIIC), where they are cleaved

and bind the microbial peptides. The complex between MHC-II and peptides is transported to the cell membrane through vesicles, where it

is exposed for antigen presentation.
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derive from intracellular material [33], which could

involve the functioning of autophagy in the mechanism

of peptide–MHC-II complex formation [31]. It is also

essential to keep in mind that this is a simplified repre-

sentation of the cellular mechanism by which autop-

hagy intersect MHC-II antigen presentation. In reality,

each antigen-presenting cell contains multiple early

endosomes and antigen-processing compartments.

These compartments form a spectrum, with varying

levels of the key components needed to produce

peptide–MHC-II complexes within each cell. Hence,

the specific antigen-processing compartments utilized

by different antigens can differ significantly.

Macrophage autophagy in bacterial
infections

Autophagy represents one of the key initial steps char-

acterizing macrophage response to bacterial infections.

In such specific form autophagy is referred to as xeno-

phagy and one of the initial steps of this process is the

phosphorylation of AMPK, a well-known activator of

autophagy. It has been demonstrated that bacteria

detection triggers AMPK activity, which in turn leads

to the release of mTORC1-mediated repression of the

autophagy pathway that is activated by a mechanism

different from the bulk autophagy [34] (Fig. 2A).

Another notable example is represented by TFEB

(transcription factor EB) and TFE3 (transcription fac-

tor E3), two master genes for lysosome biogenesis [35],

that have been demonstrated important in macrophage

activation during bacterial phagocytosis [36]. Macro-

phages deficient in TFEB and TFE3 fail to adopt a

pro-inflammatory phenotype in response to bacterial

infection. In physiological conditions, macrophage

activation upon bacterial infections involves the

NOX/PHOX (NADPH oxidase)-dependent oxidative

burst, which facilitates the nuclear translocation of

TFEB through a ROS (reactive oxygen

species)-dependent mechanism, further influenced by

CD38 and NAADP (nicotinic acid adenine dinucleo-

tide phosphate) (Fig. 2B). The chelation of intracellu-

lar calcium and inhibition of PPP3/calcineurin prevent

TFEB activation, highlighting the role of calcium sig-

naling in this process. Consequently, TFEB and TFE3

activation are critical for the induction of

pro-inflammatory cytokines like IL6 and TNFa,
underpinning the importance of these factors in

macrophage-mediated inflammation and various dis-

ease contexts, including atherosclerosis and obesity.

Reactive oxygen species production play a funda-

mental role in the regulation of autophagy in macro-

phages, also influencing mitochondrial dynamics.

Within this context, the protein mitofusin 2 (Mfn2)

has been shown as an important factor in macrophage

mitochondrial dynamics [37]. Mfn2 is essential for

adapting mitochondrial respiration to stress conditions

and for ROS production during pro-inflammatory

activation. Mfn2 deficiency impairs the production of

pro-inflammatory cytokines, nitric oxide, and disrupts

processes like autophagy, apoptosis, phagocytosis, and

antigen processing. This deficiency leads to an inability

to effectively combat infections from pathogens like

Listeria monocytogenes and Mycobacterium tuberculo-

sis, highlighting the critical role of Mfn2 in

macrophage-mediated immune responses, and the

crosstalk between autophagy and the response to

pathogens.

In the study of macrophage autophagy in response

to bacterial infections, some pathogens provide excel-

lent models. Some bacteria are indeed capable of

adopting immune evasion behaviors, adapting to the

host mechanisms of defense. One such example is

L. monocytogenes, that uses listeriolysin O (LLO) to

escape from the phagosome, yet it faces autophagic

targeting in LLO-damaged phagosomes [38] (Fig. 2C).

Interestingly, L. monocytogenes can evade autophagy

through mechanisms such as actin-based motility and

bacterial phospholipases C (PLCs). Moreover, a subset

of bacteria can form the so-called ‘Spacious

Listeria-containing Phagosomes’ (SLAPs), which do

not mature and permit slow bacterial growth, leading

to a persistent infection.

In bacterial infections, macrophages are also capable

to respond by releasing material in the extracellular

space, a biological event named eructophagy [39]. In

this process, partially digested pathogen-associated

molecular patterns (PAMPs) are released extracellu-

larly from the mature phagolysosome that fuses to the

cell membrane, leading to an amplification of the local

Fig. 2. Autophagy response to bacterial infections in macrophages. (A) Bacteria inside vesicles can activate AMPK, which in turn inhibits

mTOR and activates ULK1 and VPS34 to activate xenophagy. (B) After phagocytosis, bacteria are engulfed into phagolysosomes, where the

release of calcium activates TFEB, which translocate into the nucleus. This leads to enhanced autophagy and the production of

inflammatory cytokines. (C) Cellular mechanism by which Listeria monocytogenes can damage autophagosomes and activate a persistent

infection. (D) Mechanism of eructophagy with the release of cytokines, pathogens, and increased antigen presentation function by

macrophages upon bacterial infection.
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inflammation [40]. Eructophagy is induced by pro-

inflammatory stimuli and is negatively regulated by

IL4 and mTOR (Fig. 2D). In fact, eructophagy

depends on key autophagy proteins, suggesting a com-

plex role for autophagy in modulating inflammation

beyond pathogen degradation.

Macrophage-mediated autophagy has also a pivotal

role in counteracting viral infections, especially for

those viruses that use the endoplasmic reticulum (ER)

as a niche for their replication and assembly. In such

selective degradation event, autophagy digests portion

of ER containing viral foci and it can be referred to as

ER-phagy [3,41,42]. Macrophage selective ER-phagy

alleviates ER stress, eliminates viral colonized portion

of ER, and supports innate immune response upon

viral infection in multiple tissues, including liver, respi-

ratory tract, and brain [43].

Altogether, the studies on macrophage response to

bacterial infection through the activation of the autop-

hagy machinery underscore an intricate portrait in

which the activation and functional adaptation of

macrophages are profoundly linked to autophagy

dynamics.

Macrophage autophagy in
atherosclerosis

Recent research has revealed the critical roles of

autophagy and macrophages in the progression and

potential treatment of atherosclerosis, a leading cause

of cardiovascular disease worldwide. Various studies

have explored different compounds and mechanisms

that influence autophagy and macrophage behavior,

revealing significant insights into their contributions to

atherogenesis and plaque stability. In both physiology

and atherosclerosis states, macrophages can be found

as foam cells, which are cells containing cholesterol

and low-density lipoproteins, and that show an

M2-like polarized phenotype [44]. Despite the clear-

ance and metabolism of cholesterol has been for a

long attributed to the action of neutral CE hydrolases,

recent advances have clarified the contribution of

autophagy in the hydrolysis of lipid droplets in

cholesterol-loaded macrophages [45].

One recent study focused on Araloside C, a natural

compound with anti-inflammatory properties, that has

been object of investigation on macrophage polariza-

tion and autophagy in both in vivo and in vitro models

of atherosclerosis [46]. The authors found that this

compound significantly reduced plaque area and lipid

accumulation in macrophages exposed to oxidized

low-density lipoprotein, which was accompanied by a

switch to the M2 macrophage phenotype and an

increase in autophagosome formation. Importantly,

the protective effects of Araloside C were linked to the

activation of the Sirt1-mediated autophagy pathway

(Fig. 3A). In fact, the inhibition of autophagy or Sirt1

significantly diminished the benefits from the pharma-

cological treatment, highlighting the importance of this

pathway in mitigating foam cell formation and

atherosclerosis.

In another study, it has been found that arsenic tri-

oxide (ATO) activated the nuclear TFEB, which

enhanced autophagy and lysosomal biogenesis [47].

This activation was linked to a reduction in the

PI3K/AKT/mTOR signaling pathway, a key regulator

of autophagy. The study also found that ROS played

a crucial role in ATO’s effects, as antioxidants could

block these actions (Fig. 3B). Analogous effects were

obtained using trehalose, an autophagy-inducing disac-

charide able to increase TFEB activity [48], which led

to an increased autophagy and a subsequent

atheroprotection.

As the mTOR activation constitute a key player in

autophagy regulation, it is not surprisingly that many

studies rely on the targeting of mTOR and its down-

stream and upstream effectors, including scavenger

receptors. Indeed, due to the main role of macro-

phages as phagocytizing cells, their scavenger receptors

have been extensively studied for their playing crucial

roles in recognizing and clearing modified lipoproteins,

pathogens, and cellular debris, thereby contributing to

immune defense and maintaining tissue homeostasis.

Within this context, a study investigated the use of

fucoidan, a class A scavenger receptor agonist, under

conditions of endoplasmic reticulum stress [49]. The

study found that this compound inhibited autophagy

by activating the mTOR pathway, which led to

increased apoptosis in macrophages (Fig. 3B).

Besides noncanonical autophagy mechanisms, mac-

rophages can also rely on selective autophagy. This is

a form of autophagy in which distinct cargoes can

activate a dedicated degradation/recycling pathway,

often ubiquitin-dependent, through the use of specific

receptors [50]. In foam cells, lipophagy, a selective

autophagy targeting lipid droplets, stands out and has

been object of recent studies in atherosclerosis settings.

For instance, a recent report identified a list of pro-

teins associated with lipid droplets in macrophage

foam cells and demonstrated that knocking down spe-

cific genes impaired cholesterol efflux [51]. Their results

link the enhancement of lipophagy to promote choles-

terol removal and reduce atherosclerotic burden, which

could have possible therapeutic implications in athero-

sclerosis. Indeed, the enhancement of autophagy has

been promoted as a potential therapeutic target
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in atherosclerosis settings, using nanoparticles that

increase the acidification of lysosomes, hence improv-

ing their ability to clear lipid droplets aggregates [52].

Moreover, autophagy activation through the lipopha-

gic flux was found to be crucial in oxidative stress con-

dition, a significant factor in atherosclerosis [53].

Research demonstrated that the antioxidant enzyme

PRDX1 is vital for this process, as its deficiency led to

an impaired autophagic flux, and disrupted cholesterol

homeostasis in macrophages (Fig. 3C).

Additionally, macrophage autophagy plays a funda-

mental role in adaptive immunity within atheroscle-

rotic plaques. In fact, macrophages in these plaques

act as APCs that regulate adaptive immune responses.

An important entity, the spleen tyrosine kinase (SYK),

regulates autophagy and MHC class II expression in

response to oxidized LDL [54]. This regulation impacts

the presentation of antigens to T cells, influencing

adaptive immune responses and potentially contribut-

ing to the atherogenesis.

Finally, the targeting of foam cells, which results

augmented in atherosclerosis, has been object of inves-

tigation using exogenous administration of vitamin

D3, a compound that is known to inhibit foam cell

formation [55]. The activation of the vitamin D3

receptor (VDR) pathway was able to achieve such goal

by activating the autophagic flux via the expression of

MAPK1 and the inhibition of STAT3 (Fig. 3D).

Macrophage autophagy in healthy and
diseased liver

Liver-resident macrophages are known as Kupffer

cells and are responsible for maintaining the tissue

Fig. 3. Macrophage autophagy in atherosclerosis. (A) Influence of the SIRT1 pathway upon drug treatment on the regulation of

atherosclerotic plaques from foam cells. (B) Effect of mTOR pathway and TFEB activation on autophagy in the regulation of macrophage

response within atherosclerosis settings. (C) Regulation of the selective autophagy of lipid droplets (lipophagy) by oxidative stress in

atherosclerosis. (D) Molecular effects of vitamin D3 administration on foam cells autophagy regulation.
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homeostasis. Like many other tissue-resident macro-

phages, they originate from the yolk sac and colonize

liver during embryogenesis. However, in certain cir-

cumstances, including acute and chronic injuries, circu-

lating monocyte can be recruited and differentiate into

macrophages to play different functions [56]. Indeed,

in chronic disease states of the liver, macrophages can

exert a dual role, including the perpetuation of the

inflammatory state by a continuous activation of stel-

late hepatic cells, and the resolution of inflammation

through the degradation of extracellular matrix and

the release of anti-inflammatory mediators [57]. Typi-

cally, upon injury liver macrophages polarize towards

an M1 state through the activation of NF-jB, secret-
ing pro-inflammatory cytokines such as IL1b and

TNFa [58], thus promoting fibrosis. It has been

reported in mouse models of liver fibrosis that autop-

hagy can have protective effects by limiting the pro-

duction of pro-inflammatory cytokines [59]. The knock

out of the autophagy master gene Atg5 increases the

production of IL1 cytokine family members and favors

the recruitment of neutrophils to the site of injury. By

contrast, the forced induction of autophagy by rapa-

mycin treatment decreases the levels of IL1 and the

recruitment of other inflammatory immune cells, thus

limiting the liver fibrosis (Fig. 4A,B). The evidence

that pro-inflammatory macrophages exacerbate liver

injury due to the repression of autophagy comes from

another report showing that aged mice displayed an

increased fibrosis accompanied by a shift in M1 mac-

rophages together with an impaired autophagy trig-

gered by ATG5 repression [60]. Restoration of ATG5

levels in acute liver injury mice was able to rescue the

M2 macrophage polarization and helped to reduce

the number of apoptotic and necrotic hepatocytes.

The activation of NF-jB pathway is vital also in

liver cancer settings, where TAMs are known to regu-

late the tumor inception and growth [61]. In these set-

tings, in response to hepatoma-derived factors,

macrophages use the toll-like receptor 2 (TLR2) path-

way to get the NF-jB/RELA cytosolic ubiquitination,

which is then degraded through a SQSTM1/p62-

dependent mechanism, thus favoring an M2-like polar-

ization (Fig. 4C).

In another mouse model of toxin-induced liver

injury from D-galactosamine/ lipopolysaccharide, the

authors showed that the lack of autophagy (ATG5

KO) in liver macrophages led to increased injury due

to the caspase 1-dependent cleavage of pro-IL1b to its

active form [62]. This cleavage can be prevented by the

activation of AXL, a receptor tyrosine kinase that

induces autophagy in macrophages. After the interac-

tion with its ligand GAS6, the subsequent inhibition of

NLRP3 (NLR family, pyrin domain containing 3)

inflammasome activation prevents IL1b maturation,

hence improving the hepatic inflammatory response

(Fig. 4D).

Other studies on the broader implications of macro-

phage autophagy have shown their crucial role in regu-

lating inflammation. For instance, impaired autophagy

in macrophages was linked to increased hepatic inflam-

mation and liver injury in the context of obesity and a

high-fat diet [63]. This impairment led to altered mac-

rophage polarization, with an increase in pro-

inflammatory M1 and a decrease in anti-inflammatory

M2 phenotypes.

Macrophage autophagy in healthy and
diseased skin

Skin-resident macrophages, known as Langerhans

cells, are a specialized class of myeloid cells sharing

features with dendritic cells, that continuously recog-

nize and sequester external antigens and reorganize

epidermal layering of keratinocytes [64]. They also

establish a crosstalk with other immune cells to main-

tain tissue homeostasis and regulate cutaneous immu-

nity [65]. In the skin, macrophages are responsible for

the immune response to several types of insults, includ-

ing UV irradiation, and for the dermatological chronic

disease. Indeed, upon inflammation induced by sun-

burn, macrophages polarize towards an M2 state,

secreting IL-10 to dampen inflammation [66]

(Fig. 5A). It has been reported that the administration

of cholecalciferol D3 mitigates skin inflammation by

reducing the expression of inducible nitric oxide

synthase (NOS2) and tumor necrosis factor (TNF),

which is associated to a switch towards arginase

(ARG1) metabolism in macrophages. This process is

promoted by an enhanced autophagy, with increased

expression of LC3 and degradation of p62, coupled

with the autolysosome formation [67].

In epidermal immune responses against Mycobacte-

rium leprae, Langerhans cells act as antigen-presenting

cells, interacting with T lymphocytes [68]. This is

achieved by the induction of autophagy via the inter-

feron gamma (IFNc) pathway, which is followed by

the fusion of the pathogen-containing phagosome with

lysosomes, and the intra-lumen release of cathelicidin,

a well-known antimicrobial peptide (Fig. 5B).

In other epidermal contexts, macrophage autophagy

could play a detrimental role. In a model of atopic

dermatitis, autophagy deficiency leads to a decreased

skin inflammation, limiting the exacerbated type 2

immune response observed in this pathology. Indeed,

the accumulation of CEBPB is able to inhibit M2

8 The FEBS Journal (2024) ª 2024 The Author(s). The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Autophagy regulation in macrophages A. Vitaliti et al.

 17424658, 0, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1111/febs.17305 by C

ochraneItalia, W
iley O

nline L
ibrary on [29/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



macrophage polarization through the upregulation of

SOCS1/3 which in turn inhibits JAK1/STAT6 pathway

[69] (Fig. 5C).

Macrophages and autophagy in
healthy and diseased kidney

Macrophage autophagy is also crucial in maintaining

kidney health, particularly in the context of diabetic

nephropathy (DN), a common and severe complica-

tion of diabetes. The infiltration of macrophages into

kidney tissue is a key pathological feature of DN, and

recent studies have shed light on the intricate relation-

ship between macrophage autophagy and their adhe-

sion and migration responses. In a study exploring

this relationship, researchers observed that diabetic

conditions significantly impair autophagy in macro-

phages, which in turn enhance their adhesion and

migration capabilities [70]. In diabetic rats, increased

renal injury was correlated with a suppression of

autophagy, paralleled by an increased presence of

CD68-positive macrophages in the kidney tissue, indi-

cating enhanced macrophage infiltration.

Another study investigated the role of hematopoi-

etic cell kinase (HCK) in promoting kidney fibrosis in

chronic kidney disease (CKD) [71]. The research

showed that HCK is highly expressed in pro-

inflammatory macrophages in diseased kidneys. By

using HCK-knockout models and a HCK inhibitor,

the study demonstrated that reducing HCK activity

decreases macrophage pro-inflammatory polarization,

proliferation, and migration, and that this effect was

Fig. 4. Macrophage autophagy in the liver. (A) Cellular mechanism by which fibrosis induces M1 macrophage polarization, leading to the

release of pro-inflammatory cytokines, such as IL-1b. (B) Impaired autophagy results in enhanced M1 macrophage polarization, characterized

by the release of inflammatory cytokines, increased neutrophil recruitment, and exacerbation of liver fibrosis. In contrast, upregulation of

autophagy promotes M2 macrophage polarization, leading to reduced inflammatory cytokine levels, fewer neutrophils, and attenuation of

liver fibrosis. (C) In hepatocarcinoma, cancer-related factors activate tumor-associated macrophages (TAMs) via upregulation of the TLR

pathway, which enhances autophagy and drives TAMs towards an M2-like phenotype. (D) Autophagy activation via the GAS6-AXL axis

inhibits caspase-mediated cleavage of pro-IL-1b into its active form, thereby reducing liver fibrosis.
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linked to HCK’s interaction with autophagy-related

proteins, which inhibits autophagy in macrophages.

In acute kidney injury (AKI), macrophage autop-

hagy is important in regulating renal fibrosis, con-

tributing to the inflammation-related condition. It

has been recently demonstrated that the depletion of

autophagy in kidney macrophages exacerbate the

inflammation via an impaired crosstalk with tubular

epithelial cells [72]. This was further confirmed by a

recent study in which the lack of macrophage

autophagy was linked to a more severe AKI pheno-

type, with abnormally high levels of serum creati-

nine, and elevated expression of inflammatory factors

[73].

Macrophages and autophagy in brain
and neurodegeneration

Brain-resident macrophages are known as microglia

and exert important functions in tissue homeostasis

[74]. They are capable of clearing cellular debris and

establish a crosstalk with other brain cells, including

neurons and oligodendrocytes, to ensure the correct

tissue functioning. Unlike circulating macrophages,

microglia are not able to polarize in the typical

M1/M2 phenotypes [75]. They have been rather classi-

fied into other type of functional categories, including

homeostatic and adaptive microglia, based on their

transcriptional profile, morphology, and function

Fig. 5. Cellular and molecular mechanisms of macrophage autophagy in skin. (A) In skin damage induced by UV irradiation, macrophages

polarize towards an M1-like phenotype, secreting inflammatory cytokines. Vitamin D3 administration reduces the population of pro-

inflammatory macrophages. During wound healing, macrophages transition to an M2-like phenotype, and vitamin D3 promotes this switch,

increasing autolysosome formation. (B) In the skin, IFNc enhances the antigen-presenting activity of Langerhans cells, which in turn

activates the autophagy machinery. (C) In atopic dermatitis, decreased autophagy limits the exacerbated type 2 immune response,

facilitating the resolution of inflammation.
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[76,77]. However, circulating macrophages, often

reported as perivascular macrophages, can reach the

brain tissue in certain conditions, including brain

injury and neurodegeneration, exerting immune

response functions [78].

The role of autophagy in microglial cells and macro-

phage is still under investigation, and many mecha-

nisms remain unclear. However, several reports

highlighted the effect of autophagy in these cells, and

in particular, its role in modulating the response to

injury and inflammation. A recent study described

how autophagy can profoundly affect the ability of

these cells to modulate inflammation after acute brain

injury in mouse models [79]. In particular, the authors

showed that upon injury, and in autophagy deficiency

conditions given by the knockout of Beclin-1

(BECN1), both macrophages and microglia increased

their levels of NLRP3 inflammasome and type I IFN

responses, which resulted in the perpetuation of

inflammation in the site of injury. Conversely, when

they pharmacologically induced autophagy in brain-

injured mice, microglia and macrophages were able to

dampen inflammation, with decreased levels of NLRP3

(Fig. 6A). Restoration on the proper autophagy levels

has been also found beneficial in neurodegenerative

context, such as Alzheimer’s disease, where autophagy

has been linked to positive effects on the removal of

amyloid plaques [80]. The inhibition of autophagy in

brain-resident macrophages promotes a senescent phe-

notype of microglia, their disengagement from amyloid

Fig. 6. Cellular and molecular mechanisms of macrophage autophagy in the brain. (A) In the injured brain, autophagy inhibition activates the

inflammasome response, leading to increased neuroinflammation, whereas autophagy induction reduces neuroinflammation. (B) In diseased

microglia, autophagy activation promotes the clearance of b-amyloid plaques. (C) Autophagy in microglia, through the activation of CSF1R

pathways, triggers neuroprotective effects in neurons. (D) The TLR4/NF-jB pathway upregulates SQSTM1, facilitating the clearance of a-

synuclein. (E) In the absence of autophagy, a-synuclein aggregates form, promoting neurodegeneration.
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plaques, with aggravation of the disease phenotype in

a mouse model (Fig. 6B). Conversely, pharmacological

restoration of autophagy with senolytic drugs helps in

removing senescent and dysfunctional microglia and

ameliorates the pathology. In general, the impairment

of autophagy can lead to the inability of microglia to

clear amyloid plaques, the accumulation of protein

aggregates that are not cleared by glial cells, and the

subsequent death of neurons [81].

Microglia functioning was also found altered in

aging and other neurodegenerative conditions. In par-

ticular, aged microglia are characterized by an

increased canonical autophagy, following an impaired

functioning in ERK1/2, Akt, and AMPK, all down-

stream signals of CSF1R [82]. Such activation exerts

neuroprotective effects, while upon the autophagy

removal by Ulk1 knock out, microglia population

resulted decreased (Fig. 6C). This particular class of

microglia is dependent on IL34, which points at autop-

hagy as a central hub in neurodegenerative disorders,

using IL34 as modulator of microglia functioning.

Autophagy is also involved in the removal of cellu-

lar debris and protein aggregates in physiological and

pathological conditions. One example is the clearance

of alpha-synuclein aggregates produced by the release

of this soluble protein by neurons. In Parkinson’s dis-

ease, alpha-synuclein form aggregates the are cleared

by microglia (Fig. 6D,E). Upon the release of this pro-

tein, microglia are recruited, and engulf alpha-

synuclein in phagosome, activating the TLR4 receptor,

which acts via NF-jB pathway to increase the expres-

sion of SQSTM1/p62, and initiate a p62-driven autop-

hagic pathway [83]. By contrast, in mouse models

expressing human alpha-synuclein, the disruption of

the autophagy machinery was seen to cause midbrain

dopaminergic neuron degeneration.

Conclusion

This review underscores the pivotal role of autophagy

in shaping macrophage function across various tissues

and disease states. From bacterial infections to chronic

conditions like atherosclerosis, liver fibrosis, and neu-

rodegenerative diseases, autophagy emerges not just as

a regulator of macrophage behavior, but as a key

orchestrator of both immune responses and tissue

repair processes.

In the context of bacterial infections, macrophage-

mediated xenophagy is essential for pathogen clear-

ance, while also contributing to antigen presentation

and fine-tuning inflammatory responses. The potential

therapeutic implications of this are significant, as

impaired macrophage autophagy could lead to

increased susceptibility to infections. As such, enhanc-

ing this process may offer new strategies to combat

infectious diseases. By promoting the clearance of

intracellular pathogens and modulating inflammation,

boosting macrophage autophagy could limit bacterial

survival while preventing tissue damage caused by

excessive inflammation. This dual functionality pre-

sents a promising avenue for therapeutic exploration.

As central hubs in immune responses, macrophages

are not only involved in infection control but also play

a critical role in sterile inflammation. Autophagy has

been shown to regulate macrophage polarization

through distinct molecular pathways, influencing their

transition between pro-inflammatory and anti-

inflammatory states. This ability to guide macrophage

behavior places autophagy at the heart of both acute

and chronic inflammation resolution. For instance, in

atherosclerosis, autophagy’s influence on macrophage

polarization and foam cell formation suggests that tar-

geting autophagic pathways could slow or even reverse

disease progression. This leads us to speculate that

autophagy may serve as a broader therapeutic target,

with potential applications across a range of inflamma-

tory and degenerative conditions.

However, while the therapeutic potential of autop-

hagy modulation in macrophages is exciting, the com-

plexity of its effects warrants caution. Autophagy can

have opposing outcomes depending on the tissue or

disease context. For instance, in liver fibrosis or skin

diseases, autophagy might either promote healing or

exacerbate tissue damage, depending on the timing

and extent of its activation, and on the distinct

induced intracellular signaling cascades.

This highlights the need for precision in targeting

autophagy-related pathways, as simply enhancing or

suppressing autophagy may not be enough. Instead,

interventions will likely need to be finely tuned to the

specific disease environment to avoid unintended

consequences.

Autophagy dysfunction in brain-resident macro-

phages also plays a crucial role in neurodegenerative

diseases such as Alzheimer’s and Parkinson’s. Micro-

glial autophagy is essential for maintaining neuronal

homeostasis and modulating neuroinflammation. In

Alzheimer’s disease, for example, microglial-mediated

autophagy significantly contributes to the clearance of

amyloid plaques and protein aggregates, underscoring

the complex interplay between autophagy and neuroin-

flammatory responses. Targeting autophagy compo-

nents in microglia could hold promise for mitigating

neurodegeneration, though future studies must ensure

that such interventions are safe and effective in clinical

settings.
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In light of this, future studies should focus on under-

standing the context-specific roles of macrophage autop-

hagy across different tissues and disease states. While

there is immense therapeutic potential, it will be critical

to deepen our understanding of how autophagy operates

in distinct macrophage subtypes and pathological envi-

ronments. A more nuanced approach to modulating

autophagy could unlock new possibilities in treating

inflammatory and degenerative diseases, but such strate-

gies must be approached with careful consideration to

avoid detrimental effects. Future research should con-

tinue to explore these pathways to better elucidate how

autophagy influences macrophage function and to trans-

late these findings into effective clinical interventions.
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