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12.1   Introduction
Aging is characterized by a progressive deterioration of physiological func
tions and concomitant increased risk of morbidity and mortality. Aging 
constitutes a major risk factor for most complex diseases, including neuro
degenerative disorders and Parkinson’s disease (PD). In advanced econo
mies, lifespan extension has increased dramatically, the population is rapidly 
aging, and in the near future healthcare and general costs for the growing 
proportion of elders will substantially impact society. Unraveling the mech
anisms promoting healthy aging to devise effective intervention to delay or 
avoid the onset of agerelate pathologies therefore constitutes a matter of 
primary social and economic importance.

The timing and the dynamics of lifespan increase observed during the last 
century suggest that the principal factors responsible for such improvement 
are not genetic (i.e. not caused by acquisition of advantageous genetic vari
ants) because the pace of lifespan extension has been too rapid to be compati
ble with the evolutionary timescale. Nonetheless, multiple elements indicate 
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that genes influence lifespan and understanding the extent of genetic contri
bution is fundamental to decipher this phenomenon and to identify poten
tial targets to mitigate the noxious effects of aging.

A discussion on genetics of aging cannot ignore the fundamental problem 
posed by the heterogeneity of the aging phenotype. While a long lifespan is 
a wellrecognizable trait, healthy aging is definitively more complex and can 
be defined in several ways, such as the preservation of certain functions such 
as cognition or the absence of morbidity in advanced stages of life. Decod
ing the genetic landscape favoring healthy aging is therefore challenging 
because of the extreme heterogeneity in the phenotype.

The exact role of aging on the etiopathogenesis of PD and of other neuro
degenerative disorders is still debated. There is consensus, however, that 
promoting successful aging, which is associated with a desirable general 
health status and, eventually, extended lifespan, would be highly desirable in 
view of the aging role as a main risk factor for complex diseases. An overall 
good health status and longevity are to some extent correlated because it has 
been observed that longlived individuals tend to be healthy for most of their 
lives. longitudinal studies following the same cohort of cases in time, in 
fact, have shown that a lower presence in midlife of risk factor for conditions 
such as cardiovascular diseases predicts longer and healthier lifespan.1–4 The 
progression rate and the severity of aging are influenced by complex interac
tions between genes and environment, including lifestyle. In this section we 
will analyze the genetic and environmental factors so far known to impact 
aging and discuss their relevance for the control of cellular oxido–reductive 
homeostasis and PD.

12.1.1   Do Genes Influence Lifespan?
The aging phenotype is heterogeneous and is produced by the concomitant 
action of numerous biological factors. It is therefore extremely challenging 
to determine the features of genetic landscapes favoring longevity and/or 
healthy aging.

A first level of information on aging genetics can be inferred by epidemio
logical studies designed to determine whether a prominent trait of aging, for 
instance longevity, is inheritable and, if so, to what extent. here, the influ
ence of genes on aging emerges from several investigations that approached 
the problem from different perspectives. Analyses in large cohorts of twins 
demonstrated that the lifespan of homozygous pairs was more similar than 
that observed for samesex heterozygous siblings5,6 and these investigations 
estimated longevity heritability to be around 25%. Investigations in cohorts 
from the general population (i.e. populationbased studies) led to results that 
are comparable with those gathered in twins. For instance, studies on cen
tenarians have shown that siblings and offspring of exceptionally longlived 
individuals have higher chances to live longer than average;7–10 here, the con
tribution to heritability is slightly lower than that observed in twins and has 
been estimated to be around 20%.
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When looking at these figures, however, it should be considered that the 
followed phenotype – longevity – is multidimensional because it derives 
from a combination of factors; healthy aging, for instance, may be promoted 
by favorable environmental and societal conditions. Therefore, selecting a 
population exclusively on the basis of its members’ lifespan can lead to loss 
of information about potential genetic information because of confounding 
factors. Additional investigative strategies following alternative and more 
specific agingrelated phenotypes, which in turn contribute to longevity,  
might provide better insights into the effects of genes on aging. here, exam
ples come from studies monitoring traits such as weakness, defined as hand
grip strength, or lower extremity function display much higher degrees of 
heritability.11,12 overall, these researches provided preliminary evidence 
that the duration of life may be influenced by genetic factors. Although it 
has been suggested that genetic influence of longevity varies among differ
ent ethnicities,13 further investigations are required to properly address this 
issue, which is intrinsically biased by the different lifestyles among these 
groups as well as inequalities in their socioeconomic conditions and life 
expectancy.14

12.1.2   Which Genes Influence Lifespan?
Provided that epidemiological studies ascertained the influence of genes on 
aging, the next logical step would be to identify the specific genes underlying 
lifespan extension or early aging. Traditionally, these studies are performed 
through linkage analysis, in which statistical methods are used to determine 
the association between genetic markers (e.g. a certain genomic region) and 
a specific trait. In its more sophisticated form, linkage analysis involves 
genomewide genotyping for single nucleotide polymorphisms (sNPs) using 
microarray technology15 or nextgeneration DNA sequencing16 (genome
wide association studies or GWAs). linkage studies, however, present some 
intrinsic difficulties: sample size is often an issue, as very large populations  
are required to reach adequate power and, seeking association with a hetero
geneous, multicomponent trait such as longevity, only aggravates the prob
lem.17 linkage studies, in fact, are rather suitable to detect variants that exert 
strong effects on the studied trait. because general wisdom assumes that 
genetically human aging is produced by a combination of multiple loci, each 
with modest effect, linkage studies seem to be further penalized in this spe
cific field. Genotyping of sNPs implies additional challenges as sNPs number 
in the human genome is of the order of 106 and might even exceed 107.18,19 
Under these circumstances, association studies on aging have traditionally 
suffered from a significant proportion of falsepositive data. Careful valida
tion, possibly through metaanalysis of pooled data from different studies, is 
imperative.20

on the basis of these technical and conceptual hurdles, it is not surprising 
that the results from linkage studies to discover the genetic basis of longevity 
failed to meet expectations. More encouraging results have been obtained in 
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studies exploring association between a specific aging trait and candidate 
genes, in cases and control groups. In contrast to genomewide studies, this 
approach focuses on loci that, on the basis of previous biological knowledge 
(e.g. derived from animal models), constitute presumptive candidates to 
influence aging. because the strategy is circumscribed to determined loci, it 
has more power than linkage analysis to detect variants with modest effects. 
It should, however, be noted that case–control studies focused on aging 
involve the comparison between elderly and young cohorts and that this 
design poses distinctive methodological challenges concerning selection of 
appropriate controls groups. For instance, an insidious assumption is that 
the frequency of the alleles influencing lifespan is equal in the two initial 
populations of young and elders, or, in other words, that the populations 
of young and elders are not stratified. The frequency of the studied allele, 
therefore, should be comparable in a cohort of centenarians born in the first 
decade of the twentieth century (assuming that the study is performed in the 
second decade of the twentyfirst century) and in a group of putative controls 
in their seventies, born in the third decade of the same century. This sup
position, however, may be inaccurate because of several factors. Migration 
fluxes in the considered population, for instance, may change significantly 
the frequency of a certain allele and – because of substantial geographic 
mobility in certain periods of the past century – two populations born only 
a few decades apart may exhibit significant difference in allelic frequencies. 
obviously, genetic studies are designed to distinguish between different 
ethnic groups. It should be also noted, however, that such distinction rarely 
occurs within the Caucasians ethnicity and thus groups such as Germans, 
english, and Italians are treated as one, despite plausible differences in 
allelic frequencies. The issue of initial allelic frequency of genes eventually 
influencing lifespan constitutes a serious confounding factor leading to spu
rious results. An excellent article by lewis and brunner21 provides additional 
details on this and other biases undermining association studies comparing 
young controls and elder cases, and also invites caution when considering 
and interpreting data from this kind of analysis.

Given the complexity and the challenges of genetic studies on longevity, it 
is not surprising that an exiguous number of loci associated with extended 
lifespan have been identified thus far. Although several reports have indicated 
numerous genes that, in principle, might be associated with longevity, most 
of these candidates have not been confirmed in subsequent independent 
investigations and therefore their relevance for longevity remains unclear. 
In fact, only two genes have been consistently associated with longevity in 
multiple studies: Apolipoprotein e (APOE) and the Forkheadbox o (FOXO) 
transcription factor 3A (FOXO3A),22–24 also reviewed in ref. 25,26. Impor
tantly, contribution of these genes to longevity has been recently confirmed 
in a large multicenter study (the Cohorts for heart and Aging research in 
Genomic epidemiology Consortium) that performed metaanalysis of data 
from a very large population of longevity cases and relative controls.27 Given 
the study’s considerable sample size, which is generally regarded as the 
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critical ingredient for successful GWAs, it is intriguing that no genes other 
than APOE or FOXO3A emerged as candidates with significant association. 
The authors ascribe such an outcome to the intrinsic heterogeneity of lon
gevity as a trait and the involvement of rare allelic variants; alternatively, reg
ulation of longevity might depend upon different combinations of genetic 
variants, which would have modest effects individually, but interact synergis
tically when simultaneously present in a genotype. In all such cases, associa
tions would not be captured by GWAs.

In the present chapter, we will focus the discussion on APoe or FoXo3A, 
also highlighting their relevance for PD and redox homeostasis; for those 
loci with uncertain association, the reader should refer to other excellent 
reviews.17,25,26

12.2   Apolipoprotein E
Apolipoprotein e (APoe) is a 34 kDa protein involved in lipid transport and 
delivery between the different tissues of the organism.28 Although its func
tion is not limited to the central nervous system (CNs), for the purposes of 
this chapter we will emphasize its role in the brain, referring the reader to 
other excellent reviews for a more general discussion (e.g. ref. 28). A seminal 
and classic article by brown and Goldstein, who pioneered studies on receptor 
mediated cholesterol transport, still represent an excellent overview of this 
biological process and is highly recommended for further reading.29 APoe 
is particularly important in cholesterol transport and reuptake from the 
blood and it was originally described as a component of the very low den
sity lipoproteins (VlDl) and the chilomicrons. These particles are spherical 
macromolecular complexes instrumental in transporting hydrophobic lipids 
otherwise insoluble in the bloodstream. The designation VDlD derives from 
the initial characterization of this family of particles on the basis of their 
density inferred by ultracentrifugation analysis.30 structurally, lipoproteins 
consist of a lipidic core wrapped in a phospholipid monolayer, which in turn 
embeds the apolipoproteins. The lipidic core, essentially a lipid droplet, is 
composed by triacylglycerols and cholesterol, and the latter is esterified in its 
single polar hydroxyl residue to further ease solubilization by the phospho
lipid monolayer and therefore transport. humans express at least ten apo
lipoproteins, including APoe, which differ in their molecular features and 
functions.30

In the brain, APoe is primarily synthesized in astrocytes31 – and to a much 
lesser extent by microglia32 – and is essential for glialmediated delivery of cho
lesterol to neurons. Cellculture experiments indicate that APoe is secreted 
by astrocytes as a lipoprotein complex of discoidal shape, containing little 
lipid. In vivo, however, in samples from human cerebrospinal fluid (CsF), 
APoe complexes have been reported to form spherical particles containing 
esterified cholesterol in its core.33 Whether this discrepancy is due to artifacts 
in cellculture condition or rather reflects a maturation process of the particle 
from secretion to release into the CsF, which would also lead to enrichment 
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of the lipid core, is unclear. It is, however, ascertained that association with 
lipids is vital for APoe stability as demonstrated by the sharp reduction in 
its levels in the brain of mice lacking the ATPbinding cassette, subfamily A, 
member 1(Abca1) enzyme, which specifically lipidates APoe.34,35

Despite the fact that neurons can autonomously produce cholesterol, glial 
supply remains crucial to generate and maintain synaptic connections.36–38 
APoe is the principal apolipoprotein in the brain as also evidenced in stud
ies on knockout mice, which show reduced brain functional connectivity as 
determined by restingstate functional MrI, decreased immunoreactivity for 
the postsynaptic marker PsD05, and reduced cerebral blood flow.39

APoe is a polymorphic gene encoding for a protein regulating lipid homeo
stasis. In humans, APoe exists in three allelic forms at a single gene locus on 
chromosome 19, which are denominated APoe2, APoe3, and APoe4 (also 
known as ε2, ε3, ε4)40 with respective frequency of 8.4%, 77.9%, and 13.7% in 
the global population. The assortment of these alleles in the genotype exerts 
a moderate impact on both common diseases and longevity. The ε4 allele is 
in fact a moderate risk factor for Alzheimer’s disease (AD) and cardiovascular 
diseases28 and is also significantly less presented in the genotype of long
lived individuals, and in centenarians in particular.22,23 on the contrary, the 
ε2 allele might exert a protective function against AD and cardiovascular dis
orders and is enriched in centenarians.22,23 The precise reasons underlying 
these effects are poorly understood. It is, however, clear that the polymor
phisms in ε2, ε3, and ε4 modify basic biological properties of the respectively 
coded proteins: APoe2, APoe3, and APoe4.

12.2.1   LDL Receptors
The mechanism used by apolipoproteins to mediate lipid internalization is 
receptormediated endocytosis. In mammals, the lDl receptor (lDlr) fam
ily encompasses at least seven different genes and APoe can bind to most, if 
not all of its members.41,42 some members, for instance lrP1 and megalin, 
are essential for the proper development of the nervous system, as evidenced 
by embryonic lethality of knockout mice.43,44 The receptor–ligand complex 
is internalized in clathrincoated endocytic vesicles that eventually fuse with 
lysosomes, whose enzymes hydrolyze the esterified cholesterol allowing its 
release in the cytosol. The lDlr receptor escapes degradation and is recycled 
on the cell surface to participate to the next lDl uptake cycle.42 Importantly, 
lDlr function is not limited to vesicle transport via endocytosis as they also 
actively participate to cellular signal transduction,42 which is mediated by 
specific interactors with diverse functions binding to the cytosolic domain of 
the receptor. on the basis of actual knowledge, the majority of genes encod
ing for lDlr interactors mediating signalling lack elements that might link 
them to PD or even to dopaminergic (DAergic) neurons function. In some 
cases, which are described in the next paragraphs, functional evidence might 
suggest potential involvement. Data in support of this conjecture, however, 
are lacking thus far.
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The lDlr interacting protein Disabled1 (DAb1) constitutes the intra
cellular effector of reelin (rlN), an extracellular matrix glycoprotein essential 
for neuronal migration and positioning during development, which activates 
a pathway that is also relevant for the development of DAergic neurons.45,46 
The pathway is also important in the adult brain and its deregulation has 
been implicated in AD and Creutzfeld–Jacob disease.47–49 rlN interferes 
with aggregation of amyloidbeta50 and accumulates in amyloidlike deposits 
during normal aging.51 No reports describe investigations on the role of the 
rlN/DAb1 in PD thus far. rlN involvement in DAergic neuron development 
and its abnormalities in normal aging, however, might indicate that this 
pathway could also be modified in PD.

Postsynaptic density protein 95 (PsD95) is a scaffolding protein that sta
bilizes glutamate receptor, and Nmethyldaspartic acid (NMDA) receptors 
in particular in synapses. More recently it has been shown that PsD95 also 
interacts with D1 and D2 dopamine (DA) receptors and, accordingly, mice 
with targeted deletion of PsD95 show motor impairments, striatal degener
ation, and altered DAglutamate interplay.52 Additionally, PsD95 modulates 
D1 dopamine receptor trafficking and influences lDoPA dyskinesia, which 
is the major undesired side effect in DA replacing palliative therapy in PD.53

CAPoN regulates neuronal nitric oxide synthase (nNos),54 which has 
been implicated in neurodegeneration in some PD models.55,56 Addition
ally, CAPoN might participate in iron (Fe) homeostasis regulation,57 which 
is severely deranged in the substantia nigra pars compacta (sNpc) of PD 
patients.58

A further nexus between lDlr and PD might derive from the ability of its 
members, and of lrP1 in particular, to bind proteins that might have an impli
cation in the disease such as lactoferrin59–61 and alpha2macroglobulin.62

12.2.2   Effects of Polymorphisms on APOE Function
APoe isoforms present primary sequence differences at the level of amino
acidic residues 112, 158, or both. both sites can present either a cysteine 
(Cys) or an arginine (Arg) residue that are differently assorted in the iso
forms: Cys112, Cys158 in APoe2, Cys112, Arg158 in APoe3, Arg112, Arg158 
in APoe4. The mechanistic details underling the detrimental effects of the e4 
allele are dimly understood, yet it is clear that these substitutions alter Apoe 
structure and biological properties, as reviewed by Zhong and Weisgraber.63

Amino acid substitutions in APoe3 and APoe4 directly influence the struc
tural properties of the protein. In its mutant forms, APoe better succeeds 
in maintaining relatively stable equilibrium states that are inter mediates 
between the unfolded and the native configuration. These folding interme
diates – called molten globules – exhibit distinctive properties different from 
those of the protein in its native state, which might result in detrimental 
consequences.64 For instance, in the molten globule state APoe4 exposes 
otherwise buried proteolytic sites65 and is therefore more susceptible to 
proteolysis. A higher prevalence of molten globules, which occurs by virtue 
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of their increased stability in APoe3 and APoe4 variants, might therefore 
underlie detrimental processes in genotypes carrying these polymorphisms. 
Additional conformational changes concern the tertiary structure of the 
native protein state; an Arg substitution at residue 112 leads to a confor
mational shift that allows a novel interaction between Arg61 and glutamate 
(Glu)255, which compacts the protein conformation. Conversely, when a Cys 
is present at position 112, Arg61 is shielded by two helices in the structure 
and is therefore not available for polar interactions with Glu255. Cysteine 
to Arg substitution at position 158 sharply reduces lDlreceptor binding 
activity. The same does not occur, however, for the Cys to Arg substitution at 
residue 112. It is also unknown if the detrimental consequences associated 
with APoe3 and APoe4 isoforms, which both carry an Arg at residue 158, are 
related to the low lDlreceptor binding activity.66

Furthermore, substitutions in APoe variants also alter the protein stabil
ity, particularly at its Nterminal, and render APoe4 less stable than APoe3, 
which is in turn less stable than APoe2. Instability has important pathogenic 
implications because it renders the isoform more prone to aggregation, at 
least in vitro.67,68 Apoe can also promote aggregation of other proteins, most 
notably amyloidbeta69 and in patients APoe4 expression levels correlate 
with the extent of amyloid deposition.70

Cysteine residues in positions 112 and 158 can engage in disulfide bonds 
forming homodimers with reduced lDlreceptor binding activity. homo
dimers, obviously, cannot form in the APoe4 form where Cys are substituted. 
A significant portion of APoe2 and APoe3 circulating in plasma is in the 
form of homodimers (about 50%),71 which constitute an even larger propor
tion in the CsF.72 There are only limited studies investigating how oxidative 
stress intrinsic to aging or neurodegenerative diseases impacts Cys residues 
of APoe and the eventual functional consequences. Snitros(yl)ation of 
APoe2 and APoe3 after interaction with Nos1 has been recently described.73 
studies on other modifications such as Sglutathionylation or the formation 
irreversible oxidative modifications (i.e. sulfenic, sulfinic, or sulfonic acids) 
have not been performed thus far, at least to the best of our knowledge.

12.2.3   APOE and Parkinson’s Disease
Traditionally, APoe polymorphisms have been associated with higher risk 
of AD. however, more recent evidence indicates that APoe may also be rele
vant for PD, and particularly for some aspect of its pathology. Genetic case 
control association studies have shown that APoe4 increases the risk of 
dementia in synucleopathies (i.e. in PD, PD with dementia, and dementia 
with lewy bodies).74 Additionally, an exhaustive, multicentric study on a rel
atively large cohort of PD case revealed that, in patients suffering with demen
tia, APoe4 allele is associated with more severe deficit in multiple cognitive 
domains.75 Interestingly, in PD patients without dementia, APoe4 associa
tion was limited to the cognitive domain of semantic verbal fluency, whose 
deterioration is typical of early AD rather than PD and is rather is attributable 
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to the derangement of the temporal cortex. This evidence suggests that 
APoe influences processes that are predominant in AD pathology, but are to 
some extent shared also by PD. It should also be emphasized, however, that 
the APoe genotype did not correlate with measures of AD neuropathological 
changes in studies on PD autopsy specimens76 and thus additional studies 
will be necessary to fully understand whether the APoe4 genotype effectively 
increases the load of ADlike neuropathological changes in PD. The molec
ular mechanisms underlying APoe effects in PD are obscure. The process 
seems to be unrelated to amyloidbeta processing because, in PD patients, 
the APoe genotype did not correlate with the brain levels of amyloidbeta.77 
Increase in both APoe and lrP1 expression has been observed in neuromel
anin (NM) containing DAergic neurons of the sNpc78 and led to the hypothe
sis that perturbation in lipid metabolism might participate to deterioration. 
APoe cascade is also activated in PD animal models, as demonstrated in 
1methyl4phenyl1,2,3,6tetrahydropyridine (MPTP)treated mice.79

12.2.4   APOE Oxidative Stress
APoe genotype also influences redox tolerance and homeostasis, which are 
central to PD etiopathogenesis.80–82 APoe can protect cells from hydrogen 
peroxide (h2o2) toxicity, it can scavenge reactive oxygen species (ros), and 
it can restrain copper (Cu)catalyzed lipoprotein oxidation,83 as reviewed in 
ref. 84. These properties are enhanced in e2 and e3 isoforms, when com
pared with e4 (e2>e3>e4). Accordingly, AD patients carrying the e4 poly
morphism exhibit signs of redox imbalance such as lipid peroxidation in the 
brain85 and increased ros in the bloodstream.86,87 APoe also protects synap
tosomes from amyloidbetainduced oxidation in an alleledependent way 
(e2>e3>e4).88,89 Additionally, APoe interferes with the metabolism of metals. 
Initial experiments used metalchelate affinity chromatography to demon
strate APoe capacity to interact with different metal cations and determined 
that the protein has strong affinity for Cu, and to a lesser extent, for ferric 
(Fe3+), ferrous (Fe2+), and zinc (Zn) cations.83 The exact binding metal site 
remains to be identified, but it has been speculated that the fourhelix bun
dle at the protein Nterminus is structurally compatible with metal coordi
nation.83 The latter, however, does not differ among the different isoforms.83 
Whether these factors participate to PD etiopathogenesis is unknown, but it 
is tempting to speculate that APoe genotype might contribute to perturba
tion of Fe metabolism, which is central to PD pathogenesis.58

12.3   FOXO3A and FOXO Family
FoXo3A belongs to the subfamily of the FoXo transcription factors, which 
are homologs of C. elegans DAF16.90,91 Members of the FoXo family are 
highly conserved, especially at the level of the 110amino acid DNA binding 
domain, and are found in species ranging from yeast to humans. FoXos 
play a central role in multiple biological processes, including cell cycle and 
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differentiation,90,91 DNAdamage repair,92,93 metabolism,94–96 apoptosis,97,98 
oxidative stress resistance,99,100 and longevity.101–104 Four members of the 
FoXo family, FoXo1A, FoXo3A, FoXo4 and FoXo6 have previously been 
described105 in mammals and are ubiquitously expressed with the exception 
of FoXo6, which is mainly expressed in the CNs and liver.96,106,107 They all 
share the common characteristic of being regulated by two evolutionally 
conserved signalling pathways: the canonical insulin/IGF1/PI3K and AKT 
signalling pathways108–110 negatively regulating FoXos activity, and the oxi
dative stress JNKmediated signalling activating the members of the FoXo 
family.111,112 In addition, FoXos activities are fine tuned by several other sig
nalling pathways that include acetylation, ubiquination, methylation, ade
nosine monophosphateactivated protein kinase (AMPK) regulation, and 
thiol oxidation.112,113

because the multiple binding sites located within their structure, FoXos 
can function both as transcriptional activators or repressors, probably 
depending on the range of associated cofactors. These transcriptional fac
tors have overlapping gene expression patterns both during development 
and in the adult. In addition, FoXo1, FoXo3A and FoXo4 bind to the same 
DNA target sequence and are capable of regulating the same target genes. 
FoXos members show functional redundancy, as demonstrated by deletion 
studies in mice. besides FoXo1 null mutation, which induces lethality due 
to incomplete vascular development, FoXo3A null mutants were found to be 
viable, although showing hematological abnormalities together with wide
spread organ inflammation114 and abnormal ovarian follicular development 
in females. FoXo4 null mutants show no phenotype.115

12.3.1   FOXO3A Biological Functions
As previously mentioned, the members of the FoXo family and FoXo3A in 
particular, have been involved in a vast range of cellular processes. several 
reports have shown that overexpression of the constitutively active nuclear 
form of FoXo3A induces cellcycle arrest in the G1 phase by enhancing the 
expression of the cyclindependent kinase inhibitor p27.116 expression of the 
native form of FoXo3A has been shown to directly activate transcription of 
the p130 gene, which can induce cells to enter in a quiescent state117 and to 
directly activate the DNAdamage response via the expression of the growth 
arrest and DNAdamageinducible protein alpha (GADD45a) gene by inducing 
a delay in the G2M phase in CCl39 fibroblasts exposed to ultraviolet (UV) irra
diation.118 FoXo3A is also directly involved in apoptosis induction, since it 
was found to activate the intrinsic apoptotic pathway through the modulation 
of genes belonging to the bcell Cll/lymphoma 2 (bcl2) family such as bcl2
like protein 11 (bim),119 p53 upregulated modulator of apoptosis (PUMA),120 
TNFrelated apoptosisinducing ligand (TrAIl),121 and Fas ligand.122

one of the most recent discoveries about FoXo3A activities is related 
to its significant role in modulation of mitochondria energy metabolism 
and in the regulation of response to oxidative stress. The effects of FoXo3A 
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on mitochondrial functions were studied on colon cancer cell lines, where 
activation of FoXo3A resulted in a substantial downregulation of mito
chondrial genes and changes in the levels of mitochondrial proteins such 
as mitochondrial import receptor subunit ToM20 homolog (ToM20) and 
cytochrome C oxidase1 (CoX 1). FoXo3A activation also caused a decrease 
in mitochondrial DNA copy number and a reduction in the mitochondrial 
respiration activity that was mediated by a FoXo3Adependent inhibition 
of cmyc.123 Controversially, in mouse fibroblasts and skeletal myotubes 
subjected to glucose restriction, FoXo3A accumulates in mitochondria in 
an AMPKdependent manner. Upon sirtuin 3 (sIrT3) activation, FoXo3A 
mediates mitochondrial polymerase recruitment to DNA with consequent 
transcription of the core catalytic subunits of the electron transport chain 
(eTC).124

FoXo3A has been revealed to have a prominent role in protecting cells 
from elevated oxidative stress levels. The activation of FoXo3A via the AKT 
pathway protects quiescent cells from oxidative stress by directly increasing 
the expression of the manganese superoxide dismutase (MnsoD) gene.125 
As in many transcription factors, reversible acetylation, which increases 
transactivation by increasing the affinity for the DNA, fine tunes the FoXo3A 
function.126 here, an important role is played by sIrTs, a class of histone 
deacetylases dependent from nicotinamide adenine dinucleotide (NAD+) 
able to suppress transcription on the genomewide scale.127 because they 
are regulated by NAD+, sIrTs constitute a functional nexus between metab
olism and gene expression regulation and have been implicated in multiple 
biological processes including the pathogenesis of neurodegenerative disor
ders and aging.127,128 sIrT3dependent activation of FoXo3A increases the 
expression of MnsoD and catalase (CAT) in different cell types,129–131 thus 
increasing cell survival. sIrT3mediated deacetylation of FoXo3A positively 
regulates the expression of dynamin1like protein (DrP1), mitochondrial 
fission 1 protein (FIs1) and mitofusin2 (MFN2) to coordinate mitochondrial 
fission and fusion in human endothelial cells.132 It has also been demon
strated that resveratrol, a polyphenolic compound contained in red fruits and 
wine, mediates its potent antioxidant effect by activating the sIrT3/FoXo3A 
pathway, which in turn leads to upregulation of mitochondrial genes such 
as ATP synthase 6 (ATP6), CoX1, cytochrome b (CYTb) and NADh dehydro
genase 2 and 5 (ND2 and ND5) and leads to reduction of mitochondrial ros 
reduction production.128 reperfusion after hypoxia, a condition leading to 
massive ros production, affects cellular localization of FoXo3A by inhibi
tion of the AKT pathway and induction of a rapid nuclear translocation of 
this transcription factor.133 Detrimental effects of hypoxia/reperfusion in rat 
cardiomyocytes can be mitigated by acetylcholine treatment. Mechanisti
cally, this intervention strongly reduces oxidative stress by inducing MnsoD 
expression through FoXo3A/peroxisome proliferatoractivated receptor 
gamma coactivator 1alpha (PGC1α) signalling pathway, and upregulating 
Cu/Zn super oxide dismutase (CuZnsoD) in the cytoplasm, thus protect
ing against oxidative injury and cellular apoptosis.134 Finally, it has been 
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demonstrated that, in hearts from rat subjected to ischemia/reperfusion, 
resveratrol administration activates the sIrT3/FoXo3A axis promoting the 
activation of the PINK1/Parkin pathway potentiating the mitochondrial fis
sion leading to mitophagy in rat cardiomyocites.135

12.3.2   FOXO3A and Protein Homeostasis
The role of FoXo members in the regulation of protein homeostasis and 
protein degradation has been exhaustively studied in muscle tissues and 
increasing evidence shows that FoXos are involved in both the autophagy–
lysosomal and in the ubiquitin–proteasome pathways.136–139

In myotubes, FoXo3A stimulates lysosomal proteolysis by inducing the 
expression of many autophagyrelated genes involved in various steps of 
the process, including microtubuleassociated protein 1 light chain 3 
beta (lC3b), GAbArAPl1 (GeC1), beclin 1 (beCN1), phosphatidylinosi
tol 3kinase 3 (VPs34), unc51 like autophagy activating kinase 2 (UlK2), 
and the ubiquitinlike protein ATG12 (APG12l).140 In mouse skeletal mus
cle, stimulation of the lysosomal proteolytic pathway leads to atrophy141 
and FoXo3A contributes to this process by activating the Akt1 pathway 
upregulating the expression of bcl2/adenovirus e1b 19 kDa proteininter
acting protein 3 (bNIP3), a bcl2 related protein that are involved in the 
modulation of autophagy in multiple cell systems.142–145 FoXo3A has been 
involved in mitophagy as well. In muscles, FoXo3A activates the expression 
of MUl1, a mitochondrial e3 ubiquitin ligase promoting fragmentation, 
depolarization, and clearance of mitochondria through the autophagylyso
some pathway targeting the MFN2 protein in skeletal muscle in vivo and in 
C2C12 myotubes.146 In the previous section, we have already described the 
FoXo3Adependent activation of the PINK1Parkin pathway in rat cardio
myocites, with consequent increase in the mitochondria fission process and 
the selective degradation of dysfunctional mitochondria.135 Additionally, 
Tseng and colleagues showed that sIrT3related deacetylation of FoXo3A 
regulates the expression of the primary mitophagy mediators bNIP3, bcl2/
adenovirus e1b 19 kDa proteininteracting protein 3like (bNIP3l or NIX) 
and lC3 in endothelial cells.132

In addition to autophagy and mitophagy, FoXo3A is also involved in 
the ubiquitin–proteasome system (UPs), a protein qualitycontrol process 
responsible for the degradation of cytosolic proteins147 and the removal of 
damaged proteins and protein aggregates.148 In skeletal muscle atrophy, 
FoXo3A directly regulates the expression of the muscle specific e3 ubiq
uitin ligase MUrF1 upon activation mediated by AMPKα2.149 FoXo3A can 
also mediate the crosstalk signalling between the intracellular kinases 
PI3K/AKT and mitogenactivated protein kinase (MAPK) kinase (MeK)/
extracellular signalregulated kinase (erk) pathways to coordinate the 
transcription levels of ATroGIN1 (an e3 ubiquitin ligase also known 
as FboX32) and Ubiquitin C in glucocorticoidinduced skeletal muscle 
atrophy.133
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12.3.3   FOXO3A and Parkinson’s Disease
overall, these data indicate that FoXo3A is at the crossroad of pathways and 
mechanisms of great relevance for PD etiopathogenesis, including mito
chondrial function, redox homeostasis, PINK1 and Parkin biology, protein 
quality control, and erk signalling, to mention a few.80,82,94,150,151 on these 
premises, the paucity of studies to better evaluate a potential role of FoXo3A 
in PD is rather surprising; at the time this chapter was written, a PubMed 
search using the keywords ‘FoXo3A’ and ‘Parkinson’ retrieved only six items. 
recent studies, however, show that activation of the FoXo3A pathway may 
have neuroprotective effects in PD signalling models in vitro and in vivo152 
and, accordingly, that sIrT2 mediated FoXo3A deacetylation, and subse
quent suppression of its activity, exacerbates MPTP toxicity in mice.153 These 
experimental data substantiate the hypothesis that FoXo3A might parti
cipate in PD pathogenesis and pave the way for future and more detailed 
investigations.

12.4   Role of Other Genes Emerged from Animal 
Studies in Aging

As in human studies, exploring the genetics of aging in laboratory animal 
models presents its peculiar challenges. An investigator should always ques
tion whether the aging phenotype elicited by a mutation in a single gene is 
representative of natural aging, or if it rather reflects general deterioration 
of the organism.154,155 Additionally, the extent of correlation of a mutation in 
a single gene with longevity should be carefully pondered.154,155 bearing in 
mind these caveats, studies performed in different laboratory model organ
isms suggested that several candidate genes might play a relevant role in 
increasing lifespan and in promoting healthy aging.

The identified genetic mutants have been classified into three differ
ent clusters based on their effects on life extension: (1) longlived mutants 
that can extend longevity; (2) shortterm mutants that are prone to develop 
agingrelated disorders and significantly reduce lifespan, and (3) mutants 
that have no direct effect on longevity but can be used to study in detail 
molecular mechanisms and relevant pathways involved in aging processes.154

Among them, it is worth highlighting the very well described insulin/
IGFsignalling (IIs) system, which has been identified for the first time in 
Caenorhabditis elegans. Mutations in the Iss genes Daf2 and age1, and in the 
FoXo homolog Daf16 are associated with extensions of lifespan, increased 
resistance to oxidative stress and reduced oxidative damage.156–159 similarly, 
in Drosophila melanogaster and in the longlived Ames and snell Dwarf mouse 
strains, depressed insulin signalling results in increased life extension.160,161 
Accordingly, overexpression of the Klotho gene to repress intracellular sig
nalling between insulin and insulinlike growth factor receptor 1 (IGF1r) in 
mice leads to lifespan extension.162 Complete ablation of IGF1r as well as 
of the insulin receptor (Ir), is highly deleterious because it leads to insulin 
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resistance and insulinrelated disorders such as obesity and diabetes, which 
are all agingrelated conditions that adversely impact lifespan in humans 
and animal models.163 Controversially, selective IGF1r ablation and impair
ment of the IIs pathway in the CNs decrease amyloidbeta accumulation and 
prevent mortality in an AD mouse model.164 In humans, downregulation of 
the IIs has been observed in postmortem brain of patient of sporadic AD;165 
however, the identification in centenarians of reduced circulating IGF1 lev
els in association to normal insulin production is beneficial for survival in 
old age,166–168 suggesting that modulation of the IIs system could reduce the 
occurrence of agerelated diseases, therefore improving the quality of natural 
aging and extend lifespan.

biological deterioration typical of aging has also been ascribed to accu
mulation of macromolecular damage in biological molecules caused by 
byproducts of metabolism such as ros. This theory was originally proposed 
by Denham harman in 1956, is commonly known as the freeradical theory  
of aging, and has been held as a plausible model since its original concep
tion.169 Accumulation in time of rosmediated chemical modifications to 
DNA (i.e. DNA damage) could be particularly harmful because it may corrupt 
the genetic information and therefore the cell function at its core.170 Con
sistently, mutations in certain biological pathways responsible for repairing 
DNA lesions are associated with a phenotype that closely resembles aging, 
even though it progresses at a much faster pace and is consistently described 
as accelerated aging. In humans, these defects result in devastating progeroid 
conditions such as the Cockayne syndrome. Consensus on the extent of affin
ity between natural and accelerated aging, however, is not unanimous and the 
topic is still the object of a passionate debate between scholars.171 The nucleo
tide excision repair (Ner) pathway is a versatile mechanism that is able to 
amend several types of DNA lesions and may contribute to the pathogenesis 
of neurodegenerative diseases.172,173 Mutations in genes involved in the Ner 
system, and in transcription coupled nucleotide excision repair (TCNer) 
branch in particular, are often associated with the occurrence of agerelated 
phenotype and agingrelated disorders early in life and to a remarkable reduc
tion in lifespan, suggesting that mutations in genes involved in the DNA 
repair pathways could play a relevant role in accelerating the aging processes.174 
Disorders such as Cockayne syndrome, xeroderma pigmentosus (XP), or 
trichothiodystrophy (TTD) are characterized by the progressive appearance 
of premature aging phenotypes in the first decade of life.175 In particular, Cs, 
XP and TTD patients develop defects typically associated with aging such as 
hearing loss, cataract, cachexia, oxidative damage and progressive neurolog
ical degeneration in early life and exhibit a severely reduced lifespan.172,174,176 
several organism models have been developed to dissect in detail the cor
relation between defects in the Ner system, the manifestation of multiple 
agerelated defects, and lifespan.177–182 These models have also been used to 
study agingrelated disorders,183–185 despite the fact that the rapidly develop
ing phenotype is in contrast with the chronic, slow progressing one observed 
in natural aging and in neurodegenerative conditions such as PD.155
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A further set of evidences connecting DNA damage and aging stems from 
evidence obtained in a mouse model harboring a defective form of the mito
chondrial DNA (mtDNA) polymerase (polymerase gamma or PolG). This 
enzyme has a 3′5′ exonuclease activity that is essential to proofread mtDNA 
and that was ablated in mutant mice. Consequently, this strain is charac
terized by pronounced accumulation of mutations in mtDNA, was accord
ingly named the ‘mtDNA-mutator’ mouse, and displays premature aging and 
reduced lifespan.186,187 This model is interesting also because it establishes 
a further link between the aging, DNA repair, and the freeradical theory of 
aging. An implication of this theory is in fact that ros production, which 
occurs especially during mitochondrial respiration, may induce mutations in 
mtDNA, which in turn may impair mitochondrial activity to set off a vicious 
circle that ultimately leads to further increase in ros production and thus 
faster progression of aging.169 This theory indeed fits with findings show
ing that specimens from aged individuals often exhibit fewer and structur
ally abnormal mitochondria,188 increased oxidative damage,189 and declined 
mitochondrial respiration activity.190,191 In line with these evidences there are 
observations that longlived animals show reduced oxidative damage and 
increased resistance to oxidative stress.192,193 however, only a minor increase 
of oxidative damage and normal ros production levels were observed in the 
‘mtDNA mutator’ PolG mutants, weakening the nexus between mtDNA oxi
dative damage and premature aging.187 similarly, mice deficient in oxogua
nine DNA glycosylase (oGG1), a gene responsible for the oxidative DNA lesion 
8hydroxy2deoxyguanosine (8ohdG) removal, show increased mtDNA oxi
dation levels compared to wildtype mice, but no signs of increased oxidative 
stress and regular mitochondrial activity.194

exposure to sources of oxidative stress can certainly lead to aging; a clas
sical example comes from the skin, where UVexposure constitutes a major 
contributor to the aging process.195,196 however, the freeradical theory of 
aging has been challenged by some recent studies in genetically modified 
mouse models. In fact, genetic manipulation of antioxidant enzymes failed 
to conclusively demonstrate direct connections between overexpression of 
antioxidant genes and longevity as well as between increased level of oxida
tive stress and reduction in lifespan.197,198 Null mutants for glutathione perox
idases 1 (GPx1) and MnsoD genes, or heterozygous mutants for gluta thione 
peroxidase 4 (GPx4), for instance, showed no difference in lifespan compared 
to wildtype animals, despite increased levels of oxidative damage and ele
vated sensitivity to oxidative stress.199 Deletion of the CuZnsoD gene showed 
a 30% reduction of life extension, which was, however, attributable to an 
increased incidence of hepatocellular carcinoma rather than decreased anti
oxidant capabilities.200 Mutation in the thioredoxin 2 gene (Trx2) was associ
ated with a diminished mitochondrial activity, with an increased production 
in ros, and with a slight decrease in lifespan (7%).198,201 over expression 
of MnsoD, CuZnsoD, GPx4, and catalase increased resistance to oxida
tive stress, yet led to no improvements in longevity.198 Catalase is normally 
expressed in peroxisomes and mediates dismutation of h2o2 to o2 and h2o.  

Pu
bl

is
he

d 
on

 2
1 

Ju
ly

 2
01

7.
 P

ur
ch

as
ed

 b
y 

c.
m

ila
ne

se
@

er
as

m
us

m
c.

nl
 o

n 
06

 J
ul

y 
20

19
.

View Article Online

http://dx.doi.org/10.1039/9781782622888-00389


Chapter 12404

Interestingly, redirection of catalase expression via a targeting presequence 
to the mitochondria (MCAT mice), which normally do not contain this 
enzyme, resulted in significant delay of agerelated anomalies such as car
diac dysfunction and cataract, as well as significant lifespan extension.202 
subsequent studies further substantiated the original findings.203–205 over
all, the results in MCAT mice reinforce the concepts that excessive oxidation 
might indeed favor the aging process and reveal that targeting antioxidant 
intervention to critical subcellular compartments is imperative for success. 
Nonetheless, factors other than abatement of oxidative stress might contri
bute to MCAT mice longevity, as also suggested in the original publication 
by the authors202 who speculated that chronic reduction of h2o2mediated 
intracellular signalling might also participate to the phenotype. Altogether, 
these findings indicate that further studies are required to unravel the mech
anisms integrating redox tolerance, DNA repair, and aging.

12.4.1   Are Aging-Modifying Genes Discovered in Laboratory 
Animals Relevant for PD?

All the processes mentioned in the previous section have been implicated in 
PD pathogenesis, at least to some extent, and might therefore be relevant to 
explain the relationship between aging and this disorder.

The involvement of both exogenous and endogenous oxidative stress in PD 
etiopathology has been extensively documented.206–208 Nonetheless, we are 
still unable to manipulate the cellular redox environment, as evidenced by 
the disappointing outcome of numerous clinical trials based on antioxidant 
compounds.209,210 Failure to operate effective redox control likely reflects the 
complexity of the network controlling the redox environment, which can
not be maintained at its homeostasis by simply providing electron donors 
(i.e. antioxidant molecules). Manipulation should probably be attempted on 
different levels, for instance targeting also the signalling pathways that parti
cipate in the redox control in a given cell type (e.g. DAergic neurons). Future 
studies will be necessary to address these issues and understand the role of 
agerelated redox alteration on PD pathogenesis.

A role for DNA damage and repair in PD is gradually emerging. leucinerich 
repeat kinase 2 (lrrK2) mutations, for instance, have been found to cause 
mtDNAdamage. The latter also specifically increases in DAergic neurons of 
PD patients and PD animal models.211,212 DNA quality control is an issue of 
particular relevance for neurons, which are postmitotic cells and must pre
serve their DNA lifelong. It is tempting to speculate that DAergic neurons, 
which are intrinsically more oxidized than other neuronal population even in 
normal conditions,80,213 might suffer from a progressively higher burden of 
DNAdamage accumulation and, in time, might become sensitive to environ
mental hazards related to PD. some studies to address this possibility have 
been already performed,214 but additional experiments are certainly required 
to produce conclusive evidence.
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Also, the growth hormone and the insulin pathways have been stud
ied in PD. Although no alterations in the growth hormone (Gh)/IGF1 
axis have been reported in PD patients, IGF1 provides protection against 
DAergic degeneration in PD cellular and rodent models.215–217 Gh pro
duction, however, is stimulated by several drugs currently used to miti
gate PD symptoms, such as levodopa.218,219 A potential involvement of 
Gh in the principal levodopa undesired side effect, dyskinesia, has not 
been explored thus far. Finally, a recent review summarizes the findings 
suggesting that several pathways deregulated in PD are also altered in 
diabetes and therefore establishes a mechanistic nexus between these 
diseases.220

The evidence and concepts discussed in this chapter suggest that 
multiple factors involved in natural aging might constitute potential 
modifiers of PD pathogenesis. surprisingly, studies to explore this possi
bility are relatively uncommon, therefore leaving ample room for future 
investigations.
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