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The term liquid biopsy (LB) refers to the use of various biological fluids as a surrogate for neoplastic tissue to achieve
information for diagnostic, prognostic and predictive purposes. In the current clinical practice, LB is used for the
identification of driver mutations in circulating tumor DNA derived from both tumor tissue and circulating
neoplastic cells. As suggested by a growing body of evidence, however, there are several clinical settings where
biological samples other than tissue could be used in the routine practice to identify potentially predictive
biomarkers of either response or resistance to targeted treatments. New applications are emerging as useful clinical
tools, and other blood derivatives, such as circulating tumor cells, circulating tumor RNA, microRNAs, platelets,
extracellular vesicles, as well as other biofluids such as urine and cerebrospinal fluid, may be adopted in the near
future. Despite the evident advantages compared with tissue biopsy, LB still presents some limitations due to both
biological and technological issues. In this context, the absence of harmonized procedures corresponds to an unmet
clinical need, ultimately affecting the rapid implementation of LB in clinical practice. In this position paper, based on
experts’ opinions, the AIOMeSIAPEC-IAPeSIBIOCeSIF Italian Scientific Societies critically discuss the most relevant
technical issues of LB, the current and emerging evidences, with the aim to optimizing the applications of LB in the
clinical setting.
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INTRODUCTION

The term liquid biopsy (LB) refers to the use of biological
fluids as a surrogate for neoplastic tissue to achieve infor-
mation for diagnostic, prognostic and predictive purposes.
Circulating tumor DNA (ctDNA), a fraction of circulating cell-
free DNA (cfDNA) extracted from plasma, represents the
only approved analyte in clinical practice. However, other
blood derivatives, such as circulating tumor cells (CTCs),
circulating tumor RNA (ctRNA), microRNAs (miRNAs),
platelets, extracellular vesicles, as well as other biofluids
such as urine and cerebrospinal fluid (CSF), may be
https://doi.org/10.1016/j.esmoop.2021.100164 1
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validated in the near future,1 and new applications are
emerging as useful clinical tools.

In this position paper, based on experts’ opinions, the
AIOMeSIAPEC-IAPeSIBIOCeSIF Italian Scientific Societies
revised the most relevant technical issues of LB, the current
and emerging evidence, to optimize the applications of LB
in the clinical setting.

LB: CHALLENGES AND ADVANCES

In current clinical practice, LB is used for the identification
of driver mutations carried by the ctDNA deriving from both
tumor and circulating neoplastic cells. The release of cfDNA/
ctDNA into the bloodstream is influenced by several factors
and may vary according to the patient’s clinical condition
and sampling time.1

LB provides some evident advantages with respect to
tissue biopsy. It is minimally invasive and free of compli-
cations, it can be repeated over time to monitor the mo-
lecular evolution of the disease and modulate the
therapeutic choice, and it comprehensively represents tu-
mor heterogeneity, as it potentially contains DNA deriving
from different areas of the same tumor and different dis-
ease sites.2

However, LB shows some limitations that can be related
to both biological and technological issues. Regarding the
biological matter, one of the main problems is the risk of
‘false-negative’ results that can be due to an extremely
limited amount of ctDNA in the context of cfDNA. Several
factors, such as volume and disease location, seem to affect
the concentration of ctDNA, being the metastatic setting
associated with higher ctDNA shedding into the blood-
stream compared with early-stage disease.3 Unsurprisingly,
LB results are sometimes discordant with those obtained on
tissue specimens, mostly due to the tumor heterogeneity
that should be considered for proper data interpretation.4

Concerning the technological issues, several aspects need
to be taken into account, including sample collection, pro-
cessing and DNA storage. Several methodological options,
along with a wide range of constantly updated commercial
tests, are currently available. As a result of such variables,
using widely applicable standards is crucial, particularly
when considering that a consensus on the optimal pre-
analytical procedures has not yet been reached in this re-
gard. Therefore, the harmonization of this phase of the LB
assay is still an unmet need that generates critical specific
issues, such as the random reporting of cfDNA quantity and
its qualitative evaluation, limitations in inter-individual and
inter-study comparisons together with difficulty in data
interpretation and reproducibility. Thus, such determinants
appear to significantly hamper the systematic optimization
of the procedures, eventually affecting the rapid imple-
mentation of cfDNA analysis in clinical practice.

TECHNICAL ASPECTS

Pre-analytical issues: from blood sampling to cfDNA

Almost all human cells release fragments of their genome
into body fluids and circulation, following cell apoptosis and
2 https://doi.org/10.1016/j.esmoop.2021.100164
necrosis. These cfDNA molecules are stable and maintain
the distinctive genetic characteristics of the cells from
which they originate. The cfDNA released by apoptosis is
much shorter (166-498 kb) than that released by necrosis
(>10 kb).5 The most recommended and used procedure is
cfDNA extraction from plasma. The concentration of ctDNA
approximately ranges from 1 to 10 ng/ml and depends on
several factors, including disease burden, mutation extent
in primary tumor cells and cf/ctDNA shedding into the
bloodstream. It is important to point out that not all
circulating DNA is tumor DNA; indeed, inflammatory pro-
cesses in healthy tissue surrounding tumor mass can lead to
an increase of cfDNA, but not of ctDNA.6 For all these
reasons, the pre-analytical phase must be carefully
controlled. Sampling procedure could affect sample quality,
as it might lead to hemolysis during phlebotomy; it is
therefore strongly recommended that blood withdrawal is
carried out by highly qualified personnel. cfDNA can be
isolated from both serum and plasma. However, several
studies have shown that the use of plasma is preferable to
serum.7-10 There are currently no conclusive indications on
the quantity of blood to be used to obtain a sufficient
amount of ctDNA, but many diagnostic kits indicate the
minimum amount of plasma required for analysis.

Standard K2- or K3-EDTA tubes can be used for sample
collection; however, there are specific preservative tubes
containing special fixatives able to stabilize blood and
cfDNA for several days. Published studies clearly showed
that after 3 h from sample drawing, leukocyte lysis can
occur with consequent release of germline DNA, which di-
lutes tumor DNA. Therefore, blood storage at room tem-
perature in EDTA tubes should not exceed 3 h, and plasma
collection should be done as soon as possible after blood
withdrawal. The storage of whole blood at 4�C does not
prevent leukocyte lysis. Tubes containing specific pre-
servatives should be used whenever it is not possible to
process the sample within 3 h from collection.11,12

To eliminate cell residues, plasma is obtained by two
centrifugation steps: a first low-speed centrifugation (1200-
1600 g) to avoid leukocyte lysis and a second, high-speed
centrifugation of the supernatant (�3000 g) to remove all
contaminants. Centrifugations must be carried out without
brake. The use of a refrigerated centrifuge (4�C) is also
recommended. The plasma obtained can be stored
at �20�C for short periods (w1 month). For longer periods,
it is recommended to store the plasma at �80�C, to guar-
antee cfDNA stability, avoiding freezing and thawing cycles
that can cause consistent decreased total cfDNA amount11

(Figure 1).
Extraction, quantification and cfDNA storage

cfDNA extraction should assure the highest yield of cfDNA
in order not to compromise the result of the analysis.

cfDNA concentration in plasma correlates with tumor
burden. Therefore, ctDNA tests used for early cancer detec-
tion purposes should be highly sensitive: however, highly
sensitive tests are always expensive, making large-scale
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stabilize blood and cfDNA for
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Real Time, dPCR, 
ddPCR, NGS

Blood storage at room temperature <3 hours

Centrifugation #1: 1200-1600 g to avoid leukocytes lysis

Centrifugation #2: ≥3000 g to remove contaminants

Commercial available kits to extract
cfDNA

Figure 1. Technical and analytical aspects for liquid biopsy.
cfDNA, cell-free DNA; ddPCR, droplet digital PCR; dPCR, digital PCR; NGS, next-generation sequencing.
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practical applications unrealistic. There is always a trade-off
between sensitivity and cost. Various methods have been
proposed to reduce costs, background noise and errors
induced in the amplification phase.13

Currently, several commercial kits enable the extraction
and purification of cfDNA from plasma, based on the use of
columns equipped with silica membranes, in association
with a vacuum pump, or with the use of magnetic beads,
for the capture of nucleic acids14,15 (Figure 1).

Technologies for the analysis

Real-time PCR. Real-time PCR is currently the gold standard
for the analysis of point mutations and/or small insertions/
deletions on ctDNA; this method is considerably available in
molecular diagnostic laboratories as it assures proper sensi-
tivity and turnaround time (TAT) at low costs. Real-time PCR
relies on the use of a probe that can be modified in order to
improve diagnostic sensitivity. This is the case of amplifica-
tion refractory mutation system (ARMS/Scorpion) technol-
ogy which increases sensitivity by simultaneous amplification
of one or more mutated alleles of the gene of interest and an
endogenous control gene.16 Furthermore, a specific mixture
of control oligonucleotides allows the evaluation of DNA
quality and quantity. With this specific technology it is
possible to reach a limit of detection (LOD) of 0.5%; there-
fore, this method is suitable to detect low percentages of
mutated alleles among high quantities of wild-type genomic
DNA as in the case of ctDNA.17

Digital PCR. Digital PCR (dPCR) is a technological advance-
ment of the classic PCR18; this innovative approach is
intended to transform the exponential, analog nature of
PCR into a linear, digital (or binary) signal.
Volume 6 - Issue 3 - 2021
There are three types of dPCR platforms: (i) droplet dPCR
(ddPCR), (ii) solid digital PCR (sdPCR) and (iii) beam, emul-
sion, amplification, magnetics (BEAMing) dPCR. In the
ddPCR system, partitions are represented by w20 000 ho-
mogeneous droplets in an oil-water emulsion.19 In the
sdPCR system the bioreactors are represented by w20 000-
12 000 partitions spotted on a solid support (chip), thus
avoiding an emulsion procedure and droplets breaking,
which can lead to decrease in analysis performances.20 In
both systems single DNA molecules are spread out inside
the bioreactors (droplets or wells) according to Poisson
distribution.18 After the PCR amplification steps, the anal-
ysis is based on fluorescence detection. By partitioning the
amplification reactions, it is possible to obtain both quali-
tative and quantitative information of even small numbers
of mutated in a background of wild-type alleles. Note-
worthy, dPCR is more sensitive than real-time PCR, reaching
a sensitivity limit of 0.1%-0.01% with high precision and
reproducibility.19 In the BEAMing dPCR, a standard PCR
amplification step is requested before carrying out the
analysis.21 Afterwards, the amplification products are
distributed in thousands of homogeneous droplets gener-
ated with an oil-water emulsion together with magnetic
microspheres, which will bind the PCR products. The beads
are subsequently isolated by centrifugation or by a magnet.
Finally, by means of an optical scan or flow cytometry it is
possible to quantify the DNA bound to the microspheres,
with an LOD equal to 0.01%.18 Both ddPCR and BEAMing
have allowed reduction of the detection limit of ctDNA
mutations to 0.01%-0.02%, with comparable sensitivity
(82%-87%) and specificity (97%) for epidermal growth factor
receptor (EGFR)-sensitizing mutations in lung cancer.22,23

Despite its highly sensitive and specific performances, its
https://doi.org/10.1016/j.esmoop.2021.100164 3
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workflow is complicated and expensive to apply in routine
clinical settings.24

One main limitation of all digital PCR methods, compared
with sequencing-based methods, is the potential to detect
only known mutations, thus impairing the identification of
new alterations.25

Despite these limitations, dPCR is a valid confirmatory
method and, due to its ability to quantify the mutated al-
leles and therefore to monitor patients over time, its use-
fulness as a surrogate biomarker of treatment response is
reinforced.26

In case of a result of difficult interpretation, if pre-
analytical and analytical issues are excluded, it is always
recommended to evaluate the clinical parameters.27 Low
disease burden, brain or bone progressions are generally
characterized by low ctDNA shedding, which may cause
results misinterpretation.27

Next-generation sequencing. Compared with dPCR
methods, next-generation sequencing (NGS) offers a great
opportunity to investigate multiple genes and multiple
known and unknown alterations [single-nucleotide variant
(SNV), in/dels, rearrangements] simultaneously. The devel-
opment of new and more sensitive NGS applications
allowed a sensitivity <1% (0.1%-0.01%) to be reached, that
perfectly fits with the needs of ctDNA testing.28 These ap-
plications are based on targeted sequencing, including: the
tagged-amplicon (TAm-seq) and its more advanced version
the eTAmSeqTM; the safe-sequencing system (Safe-SeqS);
the CAncer Personalized Profiling (CAPP-seq); the AmpliSeq.
Therefore, there are several NGS panels dedicated to ctDNA
analysis and some of these are able to investigate both
circulating DNA and RNA. Indeed, RNA is preferred to DNA
for the detection of fusion genes and other tricky alter-
ations (i.e. MET amplification).29-31

The concordance between NGS analysis carried out on
primary tissue and ctDNA can be low, whereas a concor-
dance of 97% between metastasis and ctDNA has been
reported.32 This discrepancy may be due to tumor hetero-
geneity or to clonal hematopoiesis, which is known to
increase with age.33 Notwithstanding, the clonal hemato-
poiesis that frequently occurs in genes responsible for
myelodysplastic syndrome and/or in leuko-emogenesis,
other genes, such as the Kirsten Rat Sarcoma Viral Onco-
gene Homolog (KRAS) can be involved.34 In order to
discriminate the mutation determined by clonal hemato-
poiesis from those in ctDNA, it is suggested to isolate and
store the fraction of mononuclear cells (peripheral blood
leukocytes): in this way we can establish the origin of a
variant as soon as both ctDNA and genomic DNA analyses
are carried out.

Report of LB results

The reporting phase is an integral part of the diagnostic
procedure; each report should contain the following
information:

� unique identification of the patient
4 https://doi.org/10.1016/j.esmoop.2021.100164
� identification of the unit/physician which prescribed the
analysis

� material used for the analysis (type and volume) and
date of collection

� methods of sample storage
� sample acceptance date and date of reporting
� methods used for analysis
� investigated variants (for targeted assays)
� genes covered (for the untargeted assay)
� test results
� sensitivity, specificity and LOD of the assay
� data interpretation regarding druggability, actionability
and resistance profiles

The report must be completed on a pre-established
model, dated and signed (possibly digitally) by the labora-
tory manager. Considering the impact of the test for ther-
apeutic strategy, reporting time should not exceed five
working days from the request. Given the overall diagnostic
sensitivity of LB (w87%), negative results for mutation
should not be identified as ‘wild-type’, as a false negative is
always possible. Therefore, in case of a negative result and
whenever it is technically feasible, the use of a tissue biopsy
or eventually a second LB withdrawal is recommended.
LB IN CLINICAL SETTINGS: CURRENT AND EMERGING
APPLICATIONS

Non-small-cell lung cancer

LB is currently recommended in clinical practice for the
molecular determination of the EGFR mutational status in
advanced non-small-cell lung cancer (NSCLC) patients.35 In
this setting, the pre-analytic phase evaluating adequate
sampling represents a crucial turning point for the assess-
ment of predictive biomarkers of response to targeted
therapies.36 Considering the increasing number of bio-
markers to be evaluated for both diagnostic and therapeutic
purposes, the management of biological material results is
very critical.37,38 In the light of the acceptable concordance
between ctDNA and tissue for EGFR evaluation,27 LB is
currently recommended as a viable option to tissue analysis
in two important clinical scenarios: (i) patients at the time of
the initial diagnosis of advanced NSCLC, before receiving any
first-line treatment (‘treatment-naive’), when the quantity or
quality of the available tissue is not adequate for molecular
testing or when molecular assay of tissue is not deemed
satisfactory; (ii) in EGFR-mutated patients progressing during
standard first-line tyrosine kinase inhibitors (TKIs) in order to
detect the EGFR exon 20 T790M resistance mutation and to
offer a targeted treatment based on third-generation TKIs.39

Even if limited prospective cohorts have been evaluated
to assess the reliability of plasma ctDNA in the identification
of other genetic variants, especially concerning the detec-
tion of rearrangements,40 supportive data are emerging for
ctDNA analysis to assess ALK rearrangements and other
genomic alterations.41 Accordingly, using ctDNA to evaluate
the status of other genomic alterations, conferring sensi-
tivity and/or resistance to targeted treatments, should be
Volume 6 - Issue 3 - 2021
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Table 1. Principal indications for liquid biopsy

Tumor type Indications References

Non-small-cell lung cancer - Initial molecular assessment, if tissue not adequate
- In EGFR-mutated patients progressing during standard first-line TKIs to detect T790M mutation

22,41,123-125

Breast cancer Identification of PI3K mutations in ERþ, HER2-negative, metastatic breast cancer patients 51,53,58

Colorectal cancer - Performing RAS and BRAF test as substitute for analysis on tumor tissue in stage IV metastatic CRC
- Analysis of RAS mutations for rechallenge in patients resistant to first line anti-EGFR therapies

65,66

Melanoma Identification of biomarkers predicting response/resistance to targeted therapy (BRAF, NRAS), and
longitudinally monitoring of treatment response to targeted therapy and immunotherapy

74,78,84

CRC, colorectal cancer; EGRF, epidermal growth factor receptor; TKIs, tyrosine kinase inhibitors.
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considered according to the clinical scenario, within the
context of clinical trials. However, given the amount of
scientific literature providing evidence to initiate a targeted
treatment in case of a positive finding of actionable muta-
tion in ctDNA, selected clinical cases should be discussed
within multidisciplinary groups and eventually considered
for ctDNA analysis on plasma using validated assays, ac-
cording to appropriately identified clinical needs41 (Table 1).

Treatment-naive advanced NSCLC patients. The identifica-
tion of driver genomic alterations has been a breakthrough
in the treatment of NSCLC patients over the last few
years.42 According to the current guidelines, molecular
profiling should be offered to all advanced or metastatic
NSCLC patients.39

The analysis of plasma ctDNA could be considered a
viable option to cytohistological sample analysis for the
assessment of EGFR status in advanced NSCLC patients with
unavailable or limited quantity and/or poor quality of tissue
samples for molecular purposes, or when the molecular
profiling on tissues is inadequate. Nonetheless, in light of
the high rate of false negatives, a negative finding of an
actionable mutation in ctDNA should be repeated or fol-
lowed up with a biopsy sampling, unless technical unfeasi-
bility or in the case of patient’s refusal43 (Figure 2, Table 1).
If a tissue re-biopsy is not feasible, the therapeutic strategy
should be considered according to the presence or absence
of actionable genomic alterations.

Although PCR-based technologies, such as real-time PCR
and ddPCR, demonstrated acceptable sensitivity and
optimal TAT, they can detect only known mutations by
specific probes, eventually not identifying less common but
potentially clinically relevant mutations.44 Such limitations
could be overcome by NGS panels which retain the
advantage of reliably covering a broader spectrum of
genomic alterations, despite the longer TAT and the need
for consolidated expertise that make this technique not yet
widespread.37

Advanced NSCLC patients progressing during TKIs. All the
EGFR-mutated advanced NSCLC patients progressing on
first- or second-generation EGFR TKIs (gefitinib, erlotinib or
afatinib) should undergo molecular profiling for the identi-
fication of exon 20 T790M EGFR mutations, which is the
most common mechanism of resistance in this cancer.43

Given the quantity and quality of studies demonstrating
Volume 6 - Issue 3 - 2021
the diagnostic accuracy of ctDNA analysis, it is reasonable to
investigate the detection of T790M from ctDNA using
ddPCR or real-time PCR.43 In the case of a positive result,
the third-generation EGFR TKI osimertinib should be
considered; conversely, a negative result for EGFR T790M
should be further investigated using ddPCR (or NGS) on
DNA from a tumor tissue re-biopsy, if clinically feasible and
accepted by the patient. More recently, in light of the
improved overall survival rates in the FLAURA trial, osi-
mertinib has also been approved by the Italian regulatory
agency (AIFA) in the first line for advanced NSCLC patients
harboring EGFR activating mutations.45 Given the inhibitory
activity of osimertinib either on such common mutations or
T790M, testing of the EGFR T790M mutation on liquid or
tissue biopsy for patients progressing to osimertinib is not
indicated.43

Other oncogenic drivers or resistance mechanisms to
standard first-line TKIs (such as EGFR secondary mutations,
MET or HER-2 alterations, ALK point mutations, phosphoi-
nositide 3-kinase (PI3K) or RAS/MAPK alterations, new
genomic rearrangements) could be effectively evaluated in
liquid and/or tissue biopsy and treated based on the bio-
logical mechanism responsible for the development of the
resistance within a clinical trial or extended access pro-
gram3,46-49 (Figure 3, Table 1).

Breast cancer

Breast cancer (BC) is characterized by a high degree of
molecular heterogeneity, which has a crucial role in driving
cell growth and proliferation. Selected cell clones are sen-
sitive to specific treatments, allowing tumor response;
however, under the selective pressure of treatments, minor
resistant cell subpopulations take growth advantages,
developing resistant sub-clones that induce tumor
progression.50

Several studies demonstrated the clinical utility of LB for
BC patients, to identify predictive biomarkers of response/
resistance to treatment, and to follow up patients’ response
during treatment.51-55

In particular, the assay on LB of genes frequently mutated
in BC [i.e. estrogen receptor 1 (ESR1), PI3K, tumor protein
p53] has been correlated to the tumor burden: it can work
as a useful strategy to monitor residual disease in patients
undergoing surgery56 and as a significant prognostic
biomarker.57
https://doi.org/10.1016/j.esmoop.2021.100164 5
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Figure 2. Flow diagram algorithm depicting the role of ctDNA analysis in treatment-naive advanced NSCLC patients.
ctDNA, circulating tumor DNA; EGFR, epidermal growth factor receptor; NSCLC, non-small-cell lung cancer.
a EGFR exon 18 point mutation, exon 19 deletions, exon 20-21 point mutations; BRAF V600 point mutations.
b ALK, ROS-1, RET, and NTRK rearrangements; MET amplification and exon 14 skipping mutation, HER-2 amplification and point mutation; KRAS G12C point mutation
(next-generation sequencing is preferred).
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It has recently been shown that mutations in the ESR1
gene may predict the resistance to treatment with aroma-
tase and cyclin-dependent kinase 4/6 (CDK4/6) inhibitors. In
particular, ESR1 mutations were analyzed in the ctDNA of
1017 patients with metastatic BC before and after 1 month
of first-line treatment with palbociclib in combination with
an aromatase inhibitor, showing an inverse correlation with
the presence of ESR1 mutations, corresponding to a
reduced progression-free survival (PFS). Furthermore, in the
group of mutated patients, the clearance of ESR1 mutations
in ctDNA after 1 month of treatment was predictive of a
longer survival, compared with the group of patients who
maintained detectable amounts of mutations in circulation.
These preliminary results were presented during the ASCO
2020 congress, and the final results will show whether the
screening for mutations of the ESR1 gene may have a
clinical validity (PADA-1 trialdNCT03079011).

Alpelisib, a PIK3CA inhibitor, was approved by the Food
and Drug Administration (FDA) in 2019 for the treatment of
patients with metastatic, PIK3CA-mutated BC. The SOLAR-1
study showed that the addition of alpelisib to fulvestrant
treatment significantly improved PFS in PIK3CA-mutated,
hormone receptor-positive (HRþ), human epidermal
growth factor receptor 2-negative (HER2e) advanced
ABC.58 Alpelisib was approved by the FDA on the basis of
the presence of PIK3CA mutations both on tissue (if avail-
able) and on LB.58 Moreover, some studies have shown that
the onset of mutations in the PIK3CA gene may be one of
the mechanisms of acquired resistance to hormone or
CDK4/6 inhibitor treatments59-61 (Figure 4).
6 https://doi.org/10.1016/j.esmoop.2021.100164
Based on available evidence, the use of LB in BC can be a
valuable option for the detection of PK3CA mutations in
patient candidates for alpelisib treatment (Table 1).
Colorectal cancer

The applications of LB for the detection of ctDNA in
colorectal cancer (CRC) are an emerging field of research
and are mainly focused on: (i) early-stage disease for a
prognostic evaluation and adjuvant therapy selection,
and (ii) advanced disease for the analysis of RAS and
BRAF mutations and monitoring of molecular targeted
therapies.

The ability to use ctDNA in stage I-III disease as a marker
of minimal residual disease (MRD), either by searching for
specific tissue somatic mutations or to evaluate methylation
markers, are emerging as fields of clinical research for
localized CRC. In this context, a correlation has already been
observed between the presence of ctDNA after surgical
excision of the primary tumor and the relapse of the dis-
ease, both in stage II and III,62-64 highlighting that the
searching for more than one variant and using serial sam-
pling increases the accuracy in predicting the presence of
MRD.64 Unfortunately, currently available data come from a
heterogeneous case series, with a limited number of pa-
tients. Therefore, this application of LB for early-stage dis-
ease is still under investigation.

By contrast, a variety of studies has demonstrated the
feasibility of carrying out the RAS test on LB as a potential
substitute for analysis on tumor tissue in stage IV metastatic
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Figure 3. Flow diagram algorithm describing the role of ctDNA analysis in advanced oncogene-addicted NSCLC patients progressing during first-line TKIs.
ALK, anaplastic lymphoma kinase; CT, platinum-based chemotherapy; ctDNA, circulating tumor DNA; EGFR, epidermal growth factor receptor; NGS, next-generation
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CRC (mRCR).65 The concordance between tissue versus LB
varies from 60% to 80%5: we underline that tumor and
peripheral blood are two distinct tissues and discrepancies
observed in terms of specificitydtaking tumor tissue as a
referencedare justified by the fact that LB is able to
overcome the spatial and temporal heterogeneity that
limits tissue analysis. Undoubtedly, LB offers the advantages
of a relatively noninvasive and more flexible approach, both
for the possibility of making the determination of the
mutational status more easily (based on the exact time of
therapeutic intervention with anti-EGFR) and for the
reduced TAT. Moreover, published data also reported a key
role for LB in the evaluation of RAS mutational status on
ctDNA in patients with RAS wild-type mCRC with acquired
resistance to anti-EGFR therapies for a rechallenge strat-
egy.66 Therefore, given the amount of scientific evidence
reported in the literature to support the analysis of alter-
ations in the ctDNA in addition to what is already available
in regard to tissue-deriving DNA and to monitor patients for
rechallenge, in selected cases and after approval by multi-
disciplinary groups, it is possible to propose the above
procedures (Figure 5).
Melanoma

Numerous studies have demonstrated a possible clinical
usefulness of LB in patients with melanoma, both for the
identification of BRAF and NRAS mutations to set up
treatment (if tissue is not available), and for quantitative
monitoring of ctDNA during treatment67-71 (Supplementary
Figure S1, available at https://doi.org/10.1016/j.esmoop.
2021.100164).
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In particular, BRAF and/or NRAS gene ctDNA mutations,
evaluated by real-time PCR or ddPCR methods, have been
associated with: (i) tumor burden analysis,72 (ii) identifica-
tion of MMR in patients undergoing radical surgery,73 and
(iii) as a significant prognostic factor in patients with stage
II/III74-76 or with metastatic disease.72 In addition, ctDNA
analysis was proposed as a useful biomarker of response to
therapy with kinase inhibitors or immunotherapy, and of
the early appearance of resistance to treatment.77-80

NGS-based multigenic panels have been recently intro-
duced for the study of ctDNA.81 This approach makes it
possible to extend the analysis of the LB also to cases not
carrying mutations in BRAF/NRAS. Furthermore, this
method allows a better study of clonal heterogeneity in
metastatic disease and for noninvasive evaluation of the
molecular evolution during the clinical follow-up. In addi-
tion to the study of cfDNA, other biomarkers in LB have
been proposed in patients with melanoma. Among these,
the evaluation of the exosomal expression of programmed
death-ligand 1 (PD-L1) was found to be a predictive marker
of response to immunotherapy.82

It should be emphasized that BRAF mutations have been
identified in the cfDNA of 1.4% of patients in dermatological
screenings83: therefore, further studies are required to
validate its possible diagnostic implications in order to avoid
false negatives, due to the low disease burden, which leads
to a minimal release of ctDNA. In fact, the concordance
between ctDNA and tissue increases proportionally to the
stage of the disease, rising to about 25%-40% in stages II/III,
up to about 70% in stage IV.74,76,84

In summary, the use of ctDNA in metastatic melanoma
has been proven as a useful tool for the identification of
https://doi.org/10.1016/j.esmoop.2021.100164 7
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biomarkers predicting response/resistance to targeted
therapy (BRAF, NRAS), and the longitudinal monitoring of
treatment response to targeted therapy and immuno-
therapy.74,78,84 However, given the amount of scientific ev-
idence reported in the literature to support the analysis of
alterations in ctDNA in addition to tissue biopsy, in selected
cases discussed within multidisciplinary groups, it is possible
to suggest the above procedures.

UPCOMING AND FUTURE APPLICATIONS OF LB

Monitoring of therapeutic response

Besides the application of LB for predictive purposes in order
to give targeted therapies, other important fields of inves-
tigation are related to the possibility to investigate MRD, to
monitor the outcome and for the rapid identification of
resistance mechanisms.85-87 MRD refers to the presence of
occult micrometastases without clinical and/or radiological
evidence of disease after curative treatments.88 In this
setting, the adoption of LB testing may be a useful tool for
the identification of MRD.89,90 A preliminary experience
carried out in a cohort of 18 CRC patients demonstrated that
the identification of ctDNA in the bloodstream after surgical
resection was predictive of disease recurrence.85 In another
study in stage II CRC patients, the post-operative risk of
recurrence was higher (>10-fold) in those with detectable
ctDNA, compared to individuals in whom ctDNA was unde-
tectable.86 LB for MRD analysis was also adopted for lung
cancer patients. In the experience of Chaudhuri et al.,87 in 40
stage I-III lung cancers treated with radiation and/or surgery,
a significant risk of recurrence was demonstrated when
detectable post-treatment ctDNA was present. Similar results
were also reported for other cancers, including BC patients,
and when CTCs were evaluated.91-93 Noteworthy, ctDNA
levels decrease after surgery and/or chemotherapy. Dawson
8 https://doi.org/10.1016/j.esmoop.2021.100164
et al.94 demonstrated that in metastatic BC patients, the
increase in ctDNA levels may predict disease progression
beforehand (at least 5months) with respect to radiological
procedures and standard serum markers. Regarding systemic
treatments, LB may be used to monitor response. Tie et al.86

reported that early changes (within 2 weeks) in ctDNA
concentration may predict radiologic responses. Similar re-
sults have also been obtained when targeted treatments
were considered. As an example, Mok et al.95 highlighted
that NSCLC patients with ctDNA EGFR sensitizing mutations
at baseline showed dynamic changes after EGFR TKIs which
correlated to treatment outcome.
Analysis of other biological fluids

The term ‘LB’ includes not only blood samples, but also
other body fluids, such as urine, saliva, CSF and effusions.96

In addition, supernatants, usually discarded after cytology,
may be adopted as a valuable source of nucleic acids
released from tumors.97 Due to the low size of ctDNA, these
small DNA fragments can cross the glomerular membrane
enabling its presence in urine.98 A significant major
advantage of urine is represented by the noninvasive
collection.97 The major disadvantage is represented by the
high risk of nucleic acid degradation due to the activity of
nucleic acid hydrolyzing enzymes.99,100 Reckamp et al.101

underlined the complementary role of urine, plasma and
tissue as sources for the detection EGFR p.T790M mutation.
Urine samples were even used for analysis of other solid
tumors, including KRAS detection in patients with stage IV
pancreatic cancer, and in stage III-IV CRC patients.102

It has been reported that saliva samples contain different
proteins, nucleic acids, electrolytes and hormones, derived
from different organs.103 Streckfus et al.104 were able to
detect c-erbB-2 in saliva specimens of BC patients. Wang
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et al.105 successfully adopted saliva to evaluate human
papillomavirus genes or somatic mutations in genes involved
in head and neck squamous cell carcinoma. In addition,
saliva may even be used in lung cancer patients.106

Although lumbar puncture is an invasive procedure, CSF
may be a valid source of cfDNA derived from cancer cells
present within the central nervous system (CNS, primary or
metastatic tumors).96 De Mattos-Arruda et al.107 high-
lighted a strong relation among tumor type, localization and
presence of tumor-derived cfDNA in the CSF of brain tumor
patients, underlining the higher presence of cfDNA in CSF
with respect to matched plasma samples. In addition, it has
been demonstrated that cfDNA extracted from CSF may be
more informative than that extracted from plasma, even in
the case of single metastasis to the CNS.108

Pleural effusions may be optimal for cfDNA analysis in the
case of localized metastasis.108 Although thoracentesis is an
invasive procedure, it is fundamental for diagnostic, thera-
peutic and molecular purposes.109 Kimura et al.110 reported
for the first time the possibility of identifying EGFR sensi-
tizing mutations by analyzing the cfDNA extracted from
pleural effusion.

However, even if promising and appropriate in some
particular conditions, this source of nucleic acids still needs
to be validated in analytical and clinical settings.
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Potential application in immunotherapy

Considering the important results obtained in patients
treated with targeted therapy, numerous studies are evalu-
ating the potential use of cfDNA/ctDNA, CTCs and other
dynamic biomarkers for immunotherapy. Recent studies
evaluated the expression of plasma or serum levels of PD-L1,
programmed cell death protein 1 (PD-1) and other immune
checkpoints.111-115 In these studies, elevated levels of the
soluble form of PD-L1 (sPD-L1) were mainly associated with
poor prognosis and worse clinical outcome.116-118 Exosome
PD-L1 has been also studied, showing how elevated con-
centrations of exosome PD-L1 in melanoma patients treated
with immune checkpoint inhibitors (ICIs) were associated
with worse prognosis.119,120

Recently, literature data showed that the quantitative
evaluation of cfDNA, the ‘genomic instability number’
(GIN),121 and the blood tumor mutational burden
(bTMB),122 are promising predictive biomarkers for ICIs.
Finally, the experimental data concerning the functional
study of T-cell receptors (TCR) of patients treated with
immunotherapy, are currently under investigation for pa-
tient stratification.

Therefore, the use of LB in immunotherapy represents a
field of activity research which has the potential to provide
‘dynamic’ biomarkers in the near future.
https://doi.org/10.1016/j.esmoop.2021.100164 9
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CONCLUSIONS

LB represents a promising, noninvasive tool to guide ther-
apeutic choices in solid tumors. The potential of LB is sig-
nificant, to predict the primary and acquired resistance to
treatments early and to monitor the molecular evolution of
the disease, modulating the therapeutic choice. Applica-
tions of LB in tumors other than NCSLC are presently
emerging, and other blood derivatives, together with other
biofluids, are an active field of research and may be adop-
ted in the near future. The Molecular Tumor Board appears
to be the critical tool to provide the required multidisci-
plinary expertise, and to translate the molecular informa-
tion for personalized treatment indication for each patient.
Biological and technical issues, as well as the standardiza-
tion of the procedures, need to be addressed to ensure the
widespread implementation in clinical practice. Collabora-
tion between clinical and laboratory scientific societies is
further encouraged in this regard.
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