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Abstract

Context: Genomic stratification can impact prostate cancer (PC) care through diagnos-
tic, prognostic, and predictive biomarkers that aid in clinical decision-making. The
temporal and spatial genomic heterogeneity of PC together with the challenges of
acquiring metastatic tissue biopsies hinder implementation of tissue-based molecular
profiling in routine clinical practice. Blood-based liquid biopsies are an attractive,
minimally invasive alternative.
Objective: To review the clinical value of blood-based liquid biopsy assays in PC and
identify potential applications to accelerate the development of precision medicine.
Evidence acquisition: A systematic review of PubMed/MEDLINE was performed to
identify relevant literature on blood-based circulating tumor cells (CTCs), circulating
tumor DNA (ctDNA), and extracellular vesicles (EVs) in PC.
Evidence synthesis: Liquid biopsy has emerged as a practical tool to profile tumor
dynamics over time, elucidating features that evolve (genome, epigenome, transcrip-
tome, and proteome) with tumor progression. Liquid biopsy tests encompass analysis of
DNA, RNA, and proteins that can be detected in CTCs, ctDNA, or EVs. Blood-based liquid
biopsies have demonstrated promise in the context of localized tumors (diagnostic
signatures, risk stratification, and disease monitoring) and advanced disease (response/
resistance biomarkers and prognostic markers).
Conclusions: Liquid biopsies have value as a source of prognostic, predictive, and
response biomarkers in PC. Most clinical applications have been developed in the
advanced metastatic setting, where CTC and ctDNA yields are significantly higher.
However, standardization of assays and analytical/clinical validation is necessary prior
to clinical implementation.
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Patient summary: Traces of tumors can be isolated from blood samples from patients
with prostate cancer either as whole cells or as DNA fragments. These traces provide
information on tumor features. These minimally invasive tests can guide diagnosis and
treatment selection.
© 2021 The Authors. Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY-NC-ND license (http://creati-

vecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Recent studies have provided insight into the molecular
landscape of prostate cancer (PC), identifying prognostic
biomarkers, actionable targets, and drug resistance biomark-
ers. The difficulty of obtaining suitable tumor material for
molecular testing is one of the reasons hampering clinical
implementation of genomic profiling. Primary prostate tumor
biopsies, although routine, are often scant inyield, and fixation
procedures impact DNA quality. Biopsies of osteoblastic
metastatic lesions, on the contrary, are technically challenging
and distressing for the patient. Moreover, PC evolves over time
as a consequence of therapy-induced selective pressure.
Secondary resistance to standard-of-care androgen receptor
(AR) targeting agents often involves genomic changes in a
polyclonal manner that may be relevant for the selection of
subsequent lines of therapy. A single tumor biopsy, from either
primary or metastatic lesions, is limited in its ability to capture
spatial heterogeneity, especially for repeated longitudinal
assessments. Indeed, primary PC is among the most spatially
heterogeneous and clonally complex cancer types [1].

The concept of a liquid biopsy encompasses the analysis of
tumor material present in a bodily fluid [2]. This material can
exist as biomolecules (e.g. circulating tumor DNA [ctDNA],
RNA, proteins, and mitochondrial DNA), circulating tumor
cells (CTCs), or extracellular vesicles (EVs). Liquid biopsies
have emerged as an attractive way to study tumor molecular
landscapes in a minimally invasive manner, allowing for real-
time snapshots of the overall tumor burden. Additionally,
liquid biopsy–based biomarkers could serve as early end-
points in clinical trials to expedite drug development [3,4].

We review current knowledge of blood-based liquid
biopsy components, their impact on clinical decision-making
in PC, opportunities for accelerating precision medicine, and
the challenges of implementing such tests in clinical practice.

2. Evidence acquisition

A systematic review of the PubMed/MEDLINE database was
performed to identify literature on CTCs, ctDNA, and EVs in
PC, published between 2005 and July 2020. Articles involving
CTCs, ctDNA, and EVs in blood from PC patients were selected,
and references cited within them were also considered.

3. Evidence synthesis

3.1. Circulating tumor cells

CTCs are cancerous cells from primary or metastatic lesions
that either have been passively shed or have actively
migrated from the tumor into the circulatory system. They
can be found as single cells or clusters, the latter having a
higher metastatic potential [5].

The half-life of CTCs in circulation is short (<1–2.5 h)
[5]. The relatively small number of CTCs in blood remains a
challenge for a comprehensive molecular analysis. CTC load
increases with disease progression, being very low or near
zero for most localized tumors. Typically, CTCs are isolated
from a peripheral blood sample of 7.5–10 ml. Nevertheless,
some studies have successfully pursued peripheral blood
aphaeresis to increase the CTC yield [6]. It remains unclear,
however, whether all tumor foci and lesions are represented
in the CTC yield.

There are different strategies facilitating CTC isolation
from blood samples, based on distinct physical or biological
characteristics of CTCs (Table 1). Biological criteria–based
methods for CTC isolation rely on selecting cells that express
specific antigens (positive selection) and disregarding those
that express other antigens (negative selection). This
strategy is based on immunoaffinity, using antibodies
targeting surface markers of epithelial cells such as EpCAM
(CD326), for positive selection, while disregarding normal
blood cells based on leukocyte markers such as CD45, CD16,
or CD66b. The Food and Drug Administration (FDA)-
approved CellSearch system (Menarini-Silicon Biosystems,
Castel Maggiore, Italy) relies on a positive immunoaffinity
assay based on EpCAM expression, followed by a semi-
automated visual identification process based on immuno-
fluorescence. It defines a CTC based on the presence of a
DAPI-positive nucleus; lack of expression of CD45; expres-
sion of the epithelial cell markers EpCAM and cytokeratins
(CKs) 8, 18, and/or 19; and a diameter of >4 mm
[7]. However, several studies have demonstrated that
expression of epithelial cell markers varies in CTCs (ie,
EpCAM-low cells) [8], indicating that a proportion of CTCs
may be missed if selection is based only on EpCAM
expression. Therefore, other platforms use EpCAM-inde-
pendent methods, such as characterizing all nucleated cells
and identifying CTCs based on specific tumor-associated
protein expression (i.e. CK8 and AR) and cell morphology
[7,9]. CTCs can also be isolated, leveraging their distinct
physical properties as different deformability, density,
surface charge, and size compared with nontumoral
circulating cells. Several microfluidic devices using this
approach have been developed (Table 1) [8,10,11].

DNA and RNA from CTCs can serve as proxies for tumor
genomic characterization. Single CTC studies allow for fine
dissection of intratumor heterogeneity [12], which might
help in understanding therapy resistance; however, single-
cell characterization is far from being clinically applicable.
Clonal genome-wide copy numbers can be ascertained
relatively inexpensively from single nucleotide polymor-
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Table 1 – Isolation platforms for CTCs in PC

Technology CTC definition Application in PC

Antibody-based positive selection
CellSearch EpCAM+, CD45–, CK8+, CK18+, CK19+, DAPI+ [57]
Adna Test EpCAM+, PSA+/PSMA+/EGFR+ [15]
CTC-Chip EpCAM+, specific antigen+ [89]
CTC-iChip >3.8 mm size, EpCAM+ [90]
IsoFlux CD45–, DAPI+, PanCK+, or EpCAM+ [91]
MagSweeper EpCAM+, CD45–, DAPI+ [10,92]
CellCollector EpCAM+, CD45–, PanCK+, PSA+, Hoechst+ [74]
NanoVelcro EpCAM+, CD45–, PanCK+, morphological verification [93]
Antibody-based negative selection
EasySep CD45– [94]
RosetteSep CD45–, CD66b–, glycophorin A–, density [74]
EPISPOT CD45–, CD66b–, glycophorin A–, PSA+, FGF2+ [74]
CTC-iChip CD45–, CD16–, CD66b– [90]
Selection-free
Epic Sciences PanCK+, CD45–, DAPI+, AR+ [9]
AccuCyte DAPI+, PanCK+, CD45–, CD66b–, CD11b–, CD14–, CD34–, EpCAM+ [95]
Selection based on distinct physical properties
ApoStream Dielectrophoretic field flow [96]
Celsee Diagnostics >7.5 mm, deformability [97]
ISET �8 mm [95]

CTC = circulating tumor cell; EGFR = epidermal growth factor receptor; PC = prostate cancer; PSA = prostate-specific antigen; PSMA = prostate-specific membrane
antigen.
Positive (+) and/or negative (–) expression of different capture/detection antigens, or physical properties, is used as a criterion for CTC isolation by different
technologies or platforms.
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phism arrays or low-pass whole-genome sequencing
(lpWGS). These lower-resolution approaches can also
identify features of genomic instability associated with
aggressive phenotypes, such as large-scale transitions
[13]. Despite the small amount of input material obtained
from CTC samples, whole-exome sequencing (WES)
approaches to identify mutations have been proved to be
feasible [10,14].

The study of aberrant AR transcripts in CTCs, particularly
those derived from AR splice variants, has attracted notable
attention due to its potential clinical relevance for AR-
targeting agents [15,16]. Interrogation of specific transcripts
using in situ padlock probes is an opportunity for targeted
transcriptomic approaches [17]. Beyond AR, multiplex
assays enable comprehensive profiling of tumor transcrip-
tomics from CTCs. These range from multiplex quantitative
polymerase chain reaction approaches [18,19] to single-cell
RNA-seq analysis [11]. In addition, methylome analysis in PC
CTCs has generated profiles that resemble those derived
from metastatic biopsies [20]. Lastly, protein expression in
CTCs can also serve as a putative predictive biomarker. For
instance, the detection of nuclear versus cytoplasmic AR-V7
has been correlated with a response to AR signaling
inhibitors (ARSi) [21]. Another example is prostate-specific
membrane antigen (PSMA) expression in CTCs [22], which
could be relevant for the development of PSMA-based
radiopharmaceuticals [23].

3.2. Circulating tumor DNA

Cell-free DNA (cfDNA) comprises short DNA fragments
(<200 bp) shed into the circulation from apoptosis or
necrosis of normal and tumor cells. In healthy individuals,
cfDNA fragments have a dominant peak at 167 bp,
supporting a model where cfDNA is associated with the
nucleosome core particle and linker histones [24]. In cancer
patients, tumor-mutated alleles can be observed in DNA
fragments shorter than nucleosomal DNA [25]. In the
bloodstream, cfDNA has a short half-life estimated between
16 min and a few hours [26].

As both normal and tumor cells shed DNA into the blood,
tumor DNA is diluted into circulating nontumoral DNA
primarily coming from hematopoietic cells [24]. The subset
of cfDNA arising from a tumor is known as ctDNA or “cfDNA
tumor fraction” [27]. The dilution of ctDNA in nontumoral
cfDNA is a significant confounding factor, and tumor
fraction is likely to be a more reliable biomarker [26]. Several
preanalytical conditions are required to maximize cfDNA
yield and quality [28], as depicted in Fig. 1. Once cfDNA is
isolated and quantified, inference of the tumor fraction
relies on computational analysis of the frequency of reads
that carry tumor-specific aberrations (e.g. point mutations,
copy number alterations, and genomic rearrangements).
Fragments of cfDNA originated in the tumor tend to have
smaller sizes than those of nontumoral cfDNA. Hence, size
selection of cfDNA can enrich for tumor content in ctDNA
analysis [25]. This specific fragmentation pattern of cfDNA
has also been postulated to be cancer-type specific and
could potentially be helpful for cancer diagnosis [29].

Tumor fraction in cfDNA usually increases in later disease
stages and with a higher tumor burden. For example, in two
studies of metastatic castration-resistant PC (mCRPC), the
median ctDNA fraction was in the range of 15–20%, although
interpatient variability was high [30,31].



Fig. 1 – Workflow depicting preanalytical, analytical, and postanalytical steps for blood-based cfDNA studies. After venipuncture, blood is collected in a
tube containing anticoagulants (EDTA and citrate are preferred to heparin). The time from sample acquisition to processing is critical, as cfDNA
degrades within few hours. To overcome this problem, tubes containing different DNA stabilizers are available; the use of these tubes is particularly
relevant in large multicenter studies with centralized analysis, or in general when the sample is not processed at the point of collection. A two-step
centrifugation process is recommended to separate the plasma component, from which the cfDNA will be extracted. If the cfDNA is not extracted
immediately, plasma can be stored at �80 �C for prolonged periods, although repeated freeze-thawing cycles compromise cfDNA quality by increasing
the amount of nontumor DNA contamination. After cfDNA isolation, quality control (QC) testing to assess cfDNA concentration and fragment size is
performed prior to characterization. cfDNA = cell-free DNA; WES = whole-exome sequencing; WGS = whole-genome sequencing.
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The lpWGS uses copy number ratios to calculate tumor
fraction, with a lower bound of detection of about 3%.
However, this method might result in false-negative results
for copy number–quiet tumors [32,33]. Targeted sequenc-
ing approaches, on the contrary, are a more affordable
strategy to deliver high-read depths at specific regions in
the genome but assume a priori that at least one somatic
mutation would be present within a targeted region to infer
ctDNA proportion; the probability of detecting mutations
increases with the size of the targeted regions.

Highly sensitive assays, such as droplet digital polymer-
ase chain reaction (ddPCR), can detect point mutations with
sensitivity ranging from 0.001% to 1%. These assays can
detect AR mutations [34] and copy number gains [35]. How-
ever, its application is limited to the analysis of individual or
a small set of known mutations (multiplexed ddPCR). These
can be particularly useful for longitudinally monitoring
tumor adaptation to targeted therapies, especially for
hotspot mutations or for mutations previously determined
by larger-scale sequencing.

Using targeted sequencing, Wyatt et al [36] showed good
concordance between ctDNA and metastatic tissue biopsy
for alterations in selected PC driver genes. Others have also
used WES on ctDNA showing high agreement with tissue
biopsies, although WES requires a higher minimum tumor
fraction, probably above 10% [30,37]. Identification of low-
frequency events, such as subclonal mutations, is more
likely to be masked in samples with a low tumor fraction.
Indeed, inference of the clonal versus subclonal origin of a
mutation requires capturing enough ctDNA alleles in order
to define clonality thresholds. By allocating sequencing
depth to fewer genomic regions, targeted sequencing allows
the study of low allele frequency events.

Methylation profiling of cfDNA is likely to be more
sensitive than somatic gene alteration profiling for the
detection of ctDNA, since there are millions of methylation
marks available to profile but only a few thousand somatic
gene alterations [38]. Recent studies in tumor [39] and
cfDNA [40,41] samples have identified methylation-based
PC subtypes and changes during disease progression.

3.3. Extracellular vesicles

EVs are secreted vesicles with a lipid bilayer and a typical size
between 50 nm and 1mm. Regarding their origin, EVs usually
derive from the plasma membrane (e.g. microvesicles) or,
alternatively, have an endosomal origin (e.g. exosomes). Some
recent works have also described smaller (exomeres, �35 nm
[42]) and larger (oncosomes, 1–10mm [43]) EVs with
important roles in cancer. The International Society for EVs
(ISEV) recommends that EVs should be classified according to:
(1) size (small [<100 nm], medium [100–200 nm], or large
[>200 nm] EVs), (2) biochemical composition (e.g. CD63
+/CD81+), or (3) cell of origin [44]. EVs can contain proteins,
lipids, metabolites, RNA (mRNA and miRNAs), and DNA as
cargo. EVs play a key role in cell-to-cell communication during
cancer progression and metastasis, as well as in triggering
immune responses [45–47]. In addition, EVs have been
associated with metastasis or relapse in cancer patients and
can serve as diagnostic and prognostic markers; these can also
be used for detecting therapeutic targets [47]. To date, few
studies have investigated the relevance of blood EVs in PC
[48,49], with most evidence coming from urine-derived EV
studies [50,51]. EV size poses a significant challenge to the
accuracy and reliability of their isolation and quantification
[52]. Ultracentrifugation is currently considered the gold
standard method, but to increase specificity, additional
techniques such as filtration, density gradients, and chroma-
tography can be implemented [44]. Different approaches have
been used for the molecular characterization of EVs and their
cargo, including transcriptomic analysis (ddPCR, real-time PCR,
and RNA-seq) for the analysis of prostate-specific antigen
(PSA), PCA3, ERG, AR, or AR-V7 [50,53,54] as well as WGS of
larger EVs [43].

3.4. Moving liquid biopsies toward clinical management of PC

3.4.1. Quantitative prognostic and response biomarkers to

accelerate drug development

Drug approval in the metastatic PC (mPC) setting is based on
improvements in overall survival (OS) and/or radiographic
progression-free survival (rPFS) [55]. CTC and cfDNA/ctDNA
kinetics have value as prognostic and response biomarkers in
mPC, offering faster readouts for clinical trials and allowing to
accelerate the development of the most promising drugs.

Pioneering work by Cristofanilli et al [56] demonstrated
the prognostic value of CTC enumeration in breast cancer,
with an optimal threshold of five or more CTCs in 7.5 ml of
blood, using the CellSearch system. In prostate cancer, two
studies in patients prior to initiating chemotherapy
demonstrated that (1) patients with five or more CTCs
per 7.5 ml of blood, referred to as an “unfavorable profile” or
a “high CTC count”, had shorter OS (prognostic biomarker),
and (2) achievement of a decrease in CTC counts after
therapy initiation (fewer than five CTCs per 7.5 ml; CTC
conversion) correlated with OS (response biomarker) and
was a stronger predictor than PSA changes [57,58]. Using the
COU-301 registration trial of abiraterone as a model, Scher
et al [59] confirmed the value of CTC counts and their
changes over time, as prognostic and response biomarkers.
CTC counts combined with lactate dehydrogenase (LDH)
levels were shown to be a surrogate of OS at the individual
patient-level, endorsing their use as intermediate biomark-
ers in mPC clinical trials. In a retrospective meta-analysis
including data from five independent randomized clinical
trials, Heller et al [60] demonstrated that CTC0 (change from
detectable to undetectable CTCs) and CTC conversion
consistently achieved higher C-index than percentage PSA
decreases to discriminate OS, supporting that CTC kinetics
could outperform PSA changes as a response biomarker.

Since then, CTC counts have been incorporated as a
biomarker of response in several phase II trials, including
the proof-of-concept studies for olaparib in PC [61], where
CTC kinetics strongly correlated with rPFS. Further studies
have also shown that relative changes in CTC counts (>30%
decrease from baseline) could be potential surrogate
endpoints [62]. Moreover, CTC kinetics could assist in
therapy switch decisions as indicators of disease progres-
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sion; increases in CTC counts after 10–12 wk of therapy
significantly correlate with reduced rPFS and OS [63,64]. Of
interest, large tumor–derived EVs expressing the same cell
surface capture markers as CTCs (i.e. EpCAM) can be co-
isolated with them and studied in platforms such as
CellSearch. Enumeration of these EpCAM + EVs may have
a prognostic value in mCRPC, to further stratify patients
with favorable CTC counts [49]. Additional studies are
needed to confirm how the combination of different liquid
biopsy approaches can improve patient stratification.

The cfDNA yield, and in particular the ctDNA fraction,
increases as cancer progresses, in association with markers
of overall tumor burden (PSA, LDH, and alkaline phospha-
tase). In an analysis of 571 patients from the FIRSTANA and
PROSELICA phase III trials of taxane-based therapies [65],
cfDNA baseline levels were an independent prognostic
factor of rPFS and OS. In addition, absolute and relative
changes in cfDNA levels on therapy correlated with PSA
responses. Similarly, in the TOPARP-A trial, a 50% drop in
cfDNA levels on olaparib therapy strongly correlated with
rPFS and OS [66].

In a randomized trial of abiraterone acetate versus
enzalutamide, ctDNA fraction was quantifiable by WES and
deep targeted 72-gene panel sequencing. Higher ctDNA
fractions (>30%) were associated with clinical markers of
tumor burden, including PSA, LDH, and alkaline phosphatase.
Tumor fraction was prognostic, with ctDNA >30% presenting
the worst rPFS, followed by a fraction between 2% and 30%, and
patients with no detectable ctDNA experiencing longer times
to progression [30]. In the hormone-naïve mPC setting, ctDNA
levels appeared to diminish rapidly during the initial weeks of
androgen deprivation therapy [67].

3.4.2. Clinical applications in localized prostate cancer

Current models for estimating the risk of relapse after
definitive local therapy rely on pretreatment serum PSA
abundance, International Society of Urological Pathology
grade on biopsy, and clinical T category. Different biomark-
ers (i.e. PTEN status, TP53 mutations, and cribriform
histology) and tissue-based molecular signatures (i.e.
Decipher and Oncotype DX) have been proposed to improve
patient stratification in localized PC, and in some cases
these have been included in clinical guidelines, but their
impact on therapeutic decision-making is still limited
[68]. Tools supporting precise stratification of localized
PC are needed, particularly in the case of longitudinal
monitoring of patients on active surveillance protocols.
Several studies have demonstrated the presence of dissem-
inated cancer cells, particularly in the bone marrow [69,70],
among patients with localized PC, providing the rationale
for studying disease dissemination via liquid biopsies.

Davis et al [71] studied the presence of CTCs in patients
with localized PC (n = 97) with the CellSearch platform. CTCs
were detected in a similar proportion of biopsy-positive
patients (21%) to a control cohort of negative biopsy
patients (20%); moreover, when present, counts were low
(fewer than one to three CTCs per sample). In a more recent
study, Salami et al [72] identified CTCs using the Epic
Sciences platform in 33/45 (73%) patients with high-risk
localized PC prior to receiving treatment. Biochemical
recurrence was associated with higher baseline AR-positive
CTC counts. Xu et al [73] showed that identification of CTCs
and CTC-RNA–based signatures could improve detection of
clinically significant PC. Kuske et al [74] combined three
independent CTC assays (CellSearch, CellColector, and
EPISPOT) and found a cumulative positivity rate of 81% in
patients with nonmetastatic high-risk PC; however, only
21% harbored five or more CTCs per 7.5 ml of blood. This
work suggests that composite biomarker assays might
increase our capacity to interrogate liquid biopsies in
localized PC. In sum, the small number of CTCs in the blood
of patients with clinically localized PC makes potential
clinical applications challenging.

Similarly, the representation of ctDNA in early disease
settings seems extremely low, challenging any downstream
applicability for clinical testing, although the presence of
ctDNA in patients with localized PC has been demonstrated
in studies of methylation [75], allelic imbalance [76], and
LOH [77]. The most comprehensive series to date came from
Hennigan et al [78], in which no significant tumor fraction
was detected by lpWGS or targeted sequencing, even in
patients with high preprostatectomy serum PSA levels who
subsequently recurred.

Lastly, the field of tumor EVs in blood as PC biomarkers
remains relatively unexplored. Park et al [48] used PSMA
expression to enrich for tumor-derived EVs from patients
with either benign prostatic hyperplasia or localized PC
tumors. Interestingly, concentration of PSMA-positive EVs
increased from low- to high-risk PC.

3.4.3. Liquid biopsies for precision use of AR targeting agents

Resistance to AR targeting agents typically emerges through
multiple alterations affecting AR activity. Liquid biopsy can
be repeated over time and represents an attractive
opportunity for biomarker stratification for more precise
ARSi use.

AR amplification and mutations can be detected in ctDNA,
and are associated with worse OS, PFS, and PSA response rate
[31,34,79]. Carreira et al [80] showed that longitudinally
acquired plasma samples allow monitoring of tumor dynamics
and emerging drug resistance mechanisms.

Antonarakis et al [81] provided proof-of-concept evi-
dence for the clinical value of AR-V7 detection in CTCs. Up to
39% of mCRPC patients treated with enzalutamide and 19%
with abiraterone had AR-V7 positive CTCs; the presence of
AR-V7 in CTCs was associated with lower PSA response and
shorter biochemical progression-free survival (bPFS). This
was further validated in a larger prospective study where
mCRPC patients were classified as CTC–, CTC+/AR-V7–, and
CTC+/AR-V7 + . PSA response rates, bPFS, and OS were
shorter in patients positive for CTCs, and even shorter in
those with AR-V7+ CTCs [15]. AR-V7 status likely offers both
prognostic and predictive information. In particular, nucle-
ar-specific localization of AR-V7 in CTCs was found to
impact OS significantly in pre-ARSi blood CTCs but was not
associated with differential response to taxanes [21]. The
presence of AR-V7 in CTCs was further validated as an
independent predictor of poor outcome in the PROPHECY
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multicenter prospective trial using two isolation
approaches (AdnaTest and Epic Sciences assay) [82]. Del
Re et al [83] used plasma-derived exosomal RNA to detect
AR-V7, with AR-V7 exosome-positive patients having a
worse prognosis and shorter response to treatment.

AR profiling in CTCs and ctDNA from the same patient
offers complementary information that could aid in ARSi
treatment decision. However, the polyclonal nature and
coexistence of multiple AR aberrations (copy number
changes, splice variants, and mutations) limit the negative
predictive value of each assay separately [16].

3.4.4. Predictive biomarkers for targeted therapies

The use of ctDNA as a predictive biomarker offers a potential
advantage over tissue-based biopsies because ctDNA may
comprise material shed by different metastatic lesions
[41]. In a randomized phase II trial of ARSi in mCRPC [30],
detection of TP53 mutations, DDR gene alterations, or AR
amplification in ctDNA was associated with worse outcome.
Other studies have confirmed a poor prognosis in patients
with TP53 alterations in ctDNA [84].

Several clinical trials in mPC are now using panel-based
cfDNA next-generation sequencing (NGS) to enrich their
populations for testing targeted agents. Phase II trials of
PARP inhibitors, such as TRITON2 (rucaparib) or GALAHAD
(niraparib), allowed recruitment based on DDR gene
alterations in ctDNA. In the TOPARP-A trial of olaparib, a
good correlation in DDR mutation status between plasma
and tumor was observed, with ctDNA detecting reversion
mutations in BRCA2 and PALB2 upon secondary resistance
[66]. Detection of clinically-relevant DDR gene deletions in
samples with low ctDNA fraction remains a difficult task
that any assay to be implemented in clinical practice needs
to address. Relevant to registration trials of AKT inhibitors in
PC, recent work by Herberts et al [85] identified AKT1 and
PIK3CA mutations in ctDNA. In addition, the detection of
microsatellite instability and tumor somatic hypermutation
in ctDNA is associated with MMR gene defects, and could be
relevant to patient selection for immune checkpoint
inhibitors [27,86].

Overall, although promising, challenges remain when
using ctDNA to identify tumor mutations in the clinical
setting. For example, a study comparing two different
commercially available panels revealed discordant results,
probably due to different coverage of the panels, but also
due to different sensitivities and specificities for certain
alterations [87]. These results highlight the need for
pursuing clinical qualification of ctDNA assays in prospec-
tive trials. Umbrella studies such as PC-BETS
(NCT03385655) and ProBio (NCT03903835) are now
testing the clinical value of ctDNA in multiarm clinical
trials.

3.5. Perspectives and future directions

Liquid biopsies can accelerate biomarker development for
precision care in PC. As novel biomarker-driven therapies
are validated, liquid biopsies also represent an opportunity
to facilitate the implementation of genomic testing into
community practice, where metastatic biopsies are pursued
less commonly than in academic centers.

The value of CTC counts as prognostic and response
biomarkers has clearly been demonstrated, offering a surro-
gate biomarker for accelerating drug development and
potentially guiding therapeutic decisions. However, cost and
access to technology, as well as heterogeneityamong studies in
terms of CTC definitions and isolation platforms, have
complicated the translation of CTC analysis to routine clinical
testing. Preliminary studies suggest that ctDNA kinetics may
also be a useful prognostic and response biomarker in clinical
practice, although further qualification in clinical trials is
needed. As both CTCs and ctDNA yield parallel tumor burden,
applicability in localized disease may be challenging, although
as ultrasensitive assays are developed, liquid biopsies might
have the potential to assist in monitoring patients after radical
therapy or to complement tissue-based biomarkers to improve
patient stratification. The use of EVs in a clinical setting holds
promise, and could complement CTC and ctDNA analyses, but
faces challenges in standardization of isolation methods and
downstream applications.

Identification of targetable alterations and emerging
resistance biomarkers represents an attractive feature of
liquid biopsies, particularly in the advanced disease setting,
and could assist in the implementation of precision
medicine therapeutics in PC practice. The FDA clearance
of the CellSearch system for CTC enumeration was a first-in-
class achievement. The recent FDA approval of the
Guardant360 CDx and FoundationOne Liquid CDx as cfDNA
NGS-based companion diagnostic assays represents a
milestone in the field, but also a reminder that liquid
biopsy assays need to be analytically validated and clinically
qualified to be endorsed for routine clinical use. Other
platforms of CTC characterization or cfDNA analysis, as well
as assays for cfDNA-based cancer diagnosis are now at
different stages of clinical validation. Some protocols allow
co-isolation of CTCs and ctDNA within the same blood
sample [88]; however, these are not used in clinical-grade
tests.

In addition, research on novel features from liquid biopsy
analytes, such as “fragmentomics” (based on ctDNA
fragment sizes), tissue-of-origin analysis, and methylation
profiling, could potentially be informative in earlier tumor
stages. Importantly, since liquid biopsies can reveal a
broader landscape of mutations in multiple analytes,
integration of these complex multidimensional data into
composite biomarkers is a current need and an active area
of research in the field.

4. Conclusions

The field of liquid biopsies in PC has advanced exponentially
over the last decade, developing prognostic and predictive
biomarkers, and holding promise for a minimally invasive
means of monitoring tumor evolution. Liquid biopsies could
guide therapeutic decisions and accelerate the develop-
ment of precision medicine in PC. However, issues relating
to standardization of assay sensitivity and specificity,
prospective clinical qualification of different assays, as well
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as cost and accessibility need to be addressed to endorse
their implementation in routine clinical practice.
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