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Simple Summary: The present study investigates the clinical benefit of CDK4/6i in ESR1 mutant
HR+ mBC patients treated with a CDK4/6i as first- or second-line therapy. Plasma was collected at
baseline prior to CDK4/6i plus hormone therapy, and ESR1 mutation was analyzed in circulating
free DNA by a ddPCR. This study demonstrates that the ESR1 mutations detected in liquid biopsy
is an independent predictive factor of clinical recurrence in the adjuvant setting. No difference
in progression-free survival (PFS) was observed in the presence or absence of ESR1 mutations in
patients treated with CDK4/6i as first-line treatment. The results suggest that CDK4/6i can overcome
ESR1-dependent resistance.

Abstract: ESR1 mutations contribute to endocrine resistance and occur in a high percentage of
hormone-receptor-positive (HR+) metastatic breast cancer (mBC) cases. Cyclin-dependent kinase
4/6 inhibitors (CDK4/6i) changed the treatment landscape of HR+ mBC, as they are able to overcome
estrogen resistance. The present retrospective study investigates the clinical benefit of CDK4/6i in
ESR1 mutant HR+ mBC patients treated with a CDK4/6i as first- or second-line therapy. Plasma
was collected at baseline prior to CDK4/6i plus hormone therapy as a first- or second-line treatment.
Circulating free DNA (cfDNA) was extracted from plasma, and ESR1 mutation analysis was per-
formed on a ddPCR. Statistical analyses were performed to investigate the predictive power of ESR1
mutations and any association with clinical factors. A total of 42 patients with mBC treated with
CDK4/6i plus endocrine therapy as first- (n = 35) or second-line (n = 7) were enrolled. Twenty-eight
patients received hormonal therapy (AI or tamoxifen) in the adjuvant setting. ESR1 mutation status in
blood was associated with shorter median disease-free survival (DFS) (30 vs. 110 months; p = 0.006).
Multivariate analysis confirmed ESR1 mutations as independent factors of resistance in adjuvant
hormone therapy. On the contrary, no difference in progression-free survival (PFS) was observed in
the presence or absence of an ESR1 mutation in patients treated with CDK4/6i as first-line treatment
(p = 0.29). No statistically significant correlation between the best response to CDK4/6i and ESR1
mutation was found (p = 0.46). This study indicates that the ESR1 mutation detected in cfDNA is an
independent predictive factor of clinical recurrence in the adjuvant setting and that CDK4/6i can
overcome ESR1-dependent resistance.
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1. Introduction

Breast cancer is characterized by a high level of molecular heterogeneity, which is
one of the main causes of resistance to therapies due to the adaptation of cell clones
under the selective pressure of treatments, leading to the acquisition of new resistance
alterations [1]. Almost 70% of breast cancers are hormone-receptor-positive (HR+), and in
these patients endocrine therapy is the backbone of treatments [2]. However, resistance
inevitably occurs and, among some patients, may be associated with mutations within
the ligand-binding domain (LBD) of the estrogen receptor-1 (ESR1) gene [3,4]. The LBD is
considered a ‘hotspot’ region that promotes tumor growth, potentially enhancing treatment
resistance, leading to the constitutive ligand-independent ER activation [3,5]. The most
common ESR1 point mutations are present in codons 537 and 538, followed by others that
have been identified with lower frequencies [3,6]. Data report that the prevalence of the
ESR1 mutations depends on the duration and setting of the endocrine therapy and that
they seem to occur almost exclusively after aromatase inhibitors in metastatic breast cancer
(mBC) patients [7–9]. Recent data highlighted the potential role of ESR1 mutational status
as a predictive biomarker and a tool to guide clinicians in therapeutic decisions [7,10].
Recently, new therapeutic strategies have been developed, including cyclin-dependent
kinase 4/6 inhibitors (CDK4/6i). Interestingly, it is known that ESR1 mutations respond
differently to treatment due to the polyclonal origin of such ESR1 variants, in addition
to high tumor molecular heterogeneity [11]. Moreover, the detection of ESR1 mutations
has been associated with clinically inferior outcomes, including progression-free survival
(PFS) and overall survival (OS), in comparison to non-mutant ESR1 patients treated with
exemestane plus everolimus [12]. Recent data demonstrated that the use of CDK4/6i may
overcome treatment resistance to hormonal therapies, allowing for prolonged survival in
the metastatic setting [13,14]. Tracking ESR1 mutations through the use of circulating tumor
DNA (ctDNA) may be a useful tool to identify tumor molecular dynamics, improving the
personalization of treatments for mBC patients [15,16]. In the present study, the clinical
outcomes of hormone therapy and CDK4/6i in mBC patients are investigated on the basis
of the presence of ESR1 mutations as analyzed by liquid biopsy.

2. Materials and Methods
2.1. Patients and Data Collection

The present retrospective pharmacogenetic study looked at mBC patients treated
with palbociclib/ribociclib/abemaciclib as first- or second-line therapy in association with
hormonal therapy (letrozole or fulvestrant) as per approved label. Patients may have been
treated with adjuvant endocrine therapy with aromatase inhibitor or tamoxifen as per
clinical practice. According to the duration of previous endocrine response, each patient
was classified as endocrine-sensitive (if relapsed at least 12 months after the completion
of adjuvant endocrine therapy or with de novo advanced breast cancer) or endocrine-
resistant (if relapsed within 12 months after ending adjuvant endocrine therapy). Clinical
parameters, such as complete response (CR), partial response (PR), stable disease (SD), and
progressive disease (PD), were defined following RECIST (v. 1.1) criteria.

2.2. Circulating Free DNA Extraction and ESR1 Mutational Analysis

Twelve ml of blood was collected at baseline (prior to CDK4/6i) in EDTA tubes and
centrifuged at 1900× g for 10 min at 4 ◦C within 2 h after drawing to collect plasma,
which was stored at −80 ◦C until analysis. Plasma samples were centrifuged again at
1900× g for 15 min to remove cellular debris. Circulating free DNA (cfDNA) extraction
was performed using an Avenio cfDNA isolation kit (Roche, Basel, Switzerland). cfDNA
analysis of ESR1 mutations was performed by QX200 ddPCR (Bio-Rad, Hercules, CA, USA)
using ddPCR ESR1 Multiplex Assay 1 (dHsaMDXE91450042) and 2 (dHsaMDXE91450042,
dHsaMDXE65719815) for human ESR1. Multiplex 1 contained FAM-labeled probes for
p.E380Q (c.1138G > C), p.L536R (c.1607T > G), p.Y537C (c.1610A > G), and p.D538G
(c.1613A > G). Multiplex 2 contained FAM-labeled probes for p.S463P (c.1387T > C),
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p.Y537N (c.1609T > A), and p.Y537S (c.1610A > C). Fluorescence signal quantification
was performed using a droplet reader and QuantaSoft software (Bio-Rad, Hercules, CA).
Droplets with a fluorescence intensity threshold higher than 4000 were considered positive,
and the amount was expressed as copies/mL.

2.3. Statistical Analysis

Categorical variables, such as stage at diagnosis, pre-/post-menopause, ECOG perfor-
mance status, number and sites of metastasis (i.e., presence of visceral disease), CDK4/6i
line of therapy, type of associated hormonotherapy (HT) to CDK4/6i, previous chemother-
apy (CT) in the adjuvant and metastatic setting, previous HT in the adjuvant and metastatic
setting, ESR1 mutation, PR and Ki67 intervals (according to the 2011 and the 2013 St. Gallen
criteria) [17–19], and patient clinical outcome, were described by absolute and relative
frequencies. Quantitative factors such as age, ER, PR, and Ki67 expression in primary
lesions were assessed by mean ± standard deviation (STD). Disease-free survival (DFS)
was defined as the length of time from the start of hormonal adjuvant treatment to relapse,
while progression-free (PFS) and overall survivals (OS) were defined as the time from start
of treatment to PD or death from any cause. DFS, PFS, and OS curves were illustrated
using Kaplan–Meier analyses and log-rank tests, and Cox proportional hazard models
evaluated hazard ratio (HR) and 95% confidence interval (CI). An χ2-test was used to deter-
mine whether any associations between ESR1 somatic mutation and the other categorical
variables in the sample was likely to reflect a real association in the population. Differences
were considered significant at p < 0.05. All statistical calculations were performed with
MedCalc Statistical Software version 14.8.1 (MedCalc Software bvba, Ostend, Belgium),
URL, http://www.medcalc.org (accessed on 15 November 2022).

3. Results
3.1. Patient Characteristics

Forty-two patients were enrolled in the study. Clinical data of patients are reported
in Table 1. Of 42 patients, 37 (81.1%) were ER+/PR+, and 5 (11.9%) were ER+/PR−. In
particular, 4 patients (9.5%) and 38 patients (90.5%) had an ER% expressions of 51–80% and
81–100%, respectively. Moreover, 9 patients (21.4%), 3 patients (7.1%), 8 patients (19.1%),
and 22 patients (52.4%) had a PR% of 0–20%, 21–50%, 51–80%, and 81–100%, respectively.

Table 1. Characteristics of patients.

Characteristics Patients (n = 42)

Age at diagnosis, median (range) 55.1 ± 11.3
Stage at diagnosis, n (%)
I
II
III
IV (i.e., de novo M1)

14 (33.3%)
11 (26.2%)
6 (14.3%)

11 (26.2%)
ECOG PS, n (%)
0
1

38 (90.5%)
4 (9.5%)

Pre/Post-menopause, n (%)
Pre-menopause
Post-menopause

6 (14.3%)
36 (85.7%)

HR receptor status in primitive lesions, n (%)
ER+/PR+
ER+/PR−

37 (88.1%)
5 (11.9%)

Ki67 % in primitive lesions, n (%)
<14%, n (%)
14–20%, n (%)
>20%, n (%)

17 (40.5%)
8 (19%)

17 (40.5%)

http://www.medcalc.org
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Table 1. Cont.

Characteristics Patients (n = 42)

Previous CT in neoadjuvant setting, n (%)
No
Yes

36 (85.7%)
6 (14.3%)

Previous CT in adjuvant setting, n (%)
No
Yes

24 (57.1%)
18 (42.9%)

Previous HT in adjuvant setting, n (%)
No
Yes

14 (33.3%)
28 (66.7%)

Previous RT in adjuvant setting, n (%)
No
Yes

20 (47.6%)
22 (52.4%)

Number of metastatic sites, n (%)
≤2
>2

28 (66.7%)
14 (33.3%)

Disease site, n (%)
Visceral
Bone-only
Nodes

22 (52.4%)
6 (14.3%)

14 (33.3%)
Endocrine-sensitive or resistant disease, n (%)
Sensitive
Resistant

29 (69%)
13 (31%)

CDK4/6i therapy, n (%)
Palbociclib
Ribociclib
Abemaciclib

15 (35.7%)
20 (47.6%)
7 (16.7%)

CDK4/6i line of therapy, n (%)
1
2

35 (83.3%)
7 (16.7%)

Type of HT associated to CDK4/6i, n (%)
Letrozole
Fulvestrant

25 (59.5%)
17 (40.5%)

Premenopausal patients received triptorelin in association with exemestane. In the
adjuvant setting, 28 patients received tamoxifen (n = 11) and AI (n = 17) as hormonal
therapy, with a median DFS of 60 months. Overall, patients received palbociclib (n = 15),
ribociclib (n = 20), or abemaciclib (n = 7) plus hormonal therapy (letrozole or fulvestrant)
for metastatic disease treatment. Median follow-up was 12 months.

Thirty-five patients were treated with CDK4/6i as first-line treatment as follows:
10 patients were treated with palbociclib, 20 received ribociclib, and 5 abemaciclib.
Seven patients received palbociclib (n = 5) and abemaciclib (n = 2) as second-line therapy.
In latter group of patients, chemotherapy was the main first-line treatment, including
capecitabine plus vinorelbine (n = 2), taxol plus bevacizumab (n = 3), while two patients
received exemestane alone. Considering the overall population that received CDK4/6i as
first- or second-line treatment, the median OS was 49.8 months. Among patients who re-
ceived CDK4/6i plus hormonal therapy as first-line treatment, the median PFS to CDK4/6i
was not reached. Twenty-six patients were classified as endocrine-sensitive, and nine were
endocrine-resistant. A total of 25 patients had ≤2 metastatic sites, and 10 patients had
>2 metastatic sites. Six patients had bone-only disease.

3.2. ESR1 Mutation Is an Independent Predictive Biomarker of Clinical Recurrence after
Adjuvant Therapy

Among patients who received the adjuvant treatment, nine (32%) presented with
an ESR1 mutation; in particular, two patients were carriers of p.D538G, four harbored
p.Y537C, two showed p.E380Q, and one patient had the p.L536R mutation. Moreover, three
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patients (30%) treated with tamoxifen and six patients (50%) treated with AI presented
an ESR1 mutation, as reported in Figure 1.
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Figure 1. Incidence of ESR1 mutations and their association with the type of hormonal therapy
received. AI: aromatase inhibitor.

No statistical differences between the presence of ESR1 mutation and the type of
adjuvant hormonal therapy were found (p = 0.39). Patients harboring an ESR1 mutation in
blood at disease recurrence (first-line therapy, baseline) had a significantly shorter DFS com-
pared to patients without ESR1 mutations (30 vs. 110 months; 9 vs. 19 patients; p = 0.006;
Figure 2A). Univariate and multivariate Cox regression analyses were performed to assess
the effect of ESR1 mutation status on the prediction of time-to-event outcomes (Figure 2B).
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Univariate Cox regression analysis (B) of the impact of ESR1 mutational status and patients’ clinical
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The DFS univariate model showed an association between the presence of ESR1 mu-
tation (HR = 3.18; 95% CI = 1.33–7.64; p = 0.009) and KI67 expression level (HR = 2.02;
95% CI = 1.13–3.64; p = 0.02). In multivariate analysis, ESR1 mutations were confirmed as in-
dependent factors of resistance to adjuvant hormonal therapy (HR = 3.54; 95% CI = 1.19–10.52;
p = 0.02).

3.3. CDK4/6i Overcomes Hormone Therapy Resistance in ESR1 Mutant Patients

Among patients who received CDK4/6i in the metastatic setting, 13 (31%) presented
an ESR1 mutation at baseline. Considering the overall population, the median OS was
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19.3 months for ESR1 mutant patients vs. not reached in patients without ESR1 mutations
(13 vs. 29 patients; p = 0.07; Figure 3A). Among patients who received CDK4/6i as first-line
treatment, the median PFS was calculated. No statistically significant differences in terms
of PFS were found comparing ESR1 mutant and non-mutant patients (not reached in either
group; 12 vs. 23 patients; p = 0.29; Figure 3B).
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Figure 3. Overall survival of mBC patients treated with CDK4/6i (A) and progression-free survival
of first-line CDK4/6i-treated patients (B) according to ESR1 mutational status.

According to the best response, patients were divided into two groups; 29 patients
(69.04%) were identified to have a complete or partial response (CR/PR), whereas 13 patients
(30.96%) presented as stable or with a progression disease (SD/PD). The objective clinical
benefit among all patients enrolled was 61.9%. Among the CR/PR group, 21 patients
(72.41%) carried the ESR1 mutation, whereas 8 patients (27.59%) were wild-type. Moreover,
among the SD group, three patients (42.90%) carried the ESR1 mutation, while four (47.10%)
did not. Concerning the PD group, two patients (33.33%) carried the ESR1 mutation, while
four (66.67%) did not. The association between ESR1 mutational status and the clinical
response (CR/PR or SD or PD) was not statistically significant (p = 0.73; Figure 4).
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4. Discussion

The present study examined the association between ESR1 mutational status and
the response to hormonal therapy and CDK4/6 inhibitors. While ESR1 mutations were
found to have a negative predictive role for DFS after adjuvant treatment, no association
was found with CDK4/6i first-line treatment outcome, highlighting the role of CDK4/6i
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potential to overcome ESR1-dependent resistance. Moreover, no statistically significant
association between ESR1 mutational status and response (CR/PR or SD/PD) was found.

Previous studies reported no significant impact of ESR1 mutations on PFS in patients
treated with fulvestrant alone or in combination with CDK4/6i [20–22]. However, ESR1
drives tumor cell growth and proliferation, and its upregulation or the appearance of
activating mutations may be responsible for resistance to hormonal treatments [23,24].
In fact, several studies displayed a correlation between the presence of mutations in
the ESR1 receptor and the acquisition of endocrine resistance in a large percentage of
mBC patients [5,11,25–27].

Accordingly, the present study demonstrates that patients harboring an ESR1 muta-
tion at disease recurrence have a significantly shorter DFS compared to patients without
mutations (30 vs. 110 months, p = 0.006). This was also demonstrated with Cox regression
analysis, which compared the presence of ESR1 mutations with clinical characteristics such
as age, previous neoadjuvant or adjuvant therapies, ER or PR expression, and mitotic index
(Ki67) in primary cancer. Importantly, the presence of an ESR1 mutation as an independent
predictive factor of clinical recurrence was maintained in the multivariate analysis. This
result is consistent with many other clinical studies, demonstrating the crucial role of
ESR1 mutation as a driver of resistance and worse outcome in metastatic breast cancer
patients treated with aromatase inhibitors (AI), suggesting also that ESR1 mutations could
be detected soon as the first relapse to guide pharmacological intervention [12,28–31].

It is known that AIs do not bind directly to estrogen receptors; however, they are able
to reduce the levels of the estrogen ligand [32]. Moreover, Jeselsohon et al. demonstrated
that mutations in the LBD of the ESR1 confer partial resistance to tamoxifen (or fulvestrant),
probably due to a conformational change of the ER, leading to a decreased drug affinity [33].
Results from the PADA-1 trial showed that the presence of ESR1 mutations in liquid
biopsy at the baseline of the first-line treatment may be a predictive marker for patients
treated with AI + palbociclib; however, the frequent clearance of the ERS1 mutation during
AI + palbociclib treatment (often after the first cycle) suggests that AI + palbociclib retains
some activity despite ESR1 mutations. The PADA-1 trial was the first to demonstrate
the clinical utility of ESR1 mutations, showing that ESR1 mutation monitoring in liquid
biopsy allows for optimization the endocrine therapy partner of CDK4/6i, and upon ESR1
mutation detection, the mPFS was doubled by the switch from AI–palbociclib to fulvestrant–
palbociclib. Therefore, the PADA-1 trial highlights that the implementation of the PADA-1
treatment strategy may be a valid option in mBC routine care, as well as the need for the
development of new SERDs for mBC patients [13,14]. One of the limitations of the present
study is that the timing of ESR1 mutation appearance is unknown. Moreover, considering
tumor heterogeneity and the small size of our population, looking for ESR1 mutations
may not be sufficient, since other mutations, such as in the MAPK, PI3K/AKT/mTOR,
and CDK4/6 pathways, have been demonstrated to be involved in the mechanisms of
resistance [7,34]. Recently, studies on liquid biopsy demonstrated the subclonal origin
of different mutations (i.e., ESR1) in pretreated advanced ER + breast cancer and their
implication for response to therapy [35,36].

In the plasmaMATCH trial, ctDNA sequencing was used to interrogate the genomic
profile of 800 advanced breast cancer patients. The authors demonstrated the copresence of
different subclonal resistance mutations, in particular mutations in the ESR1 and MAPK
pathways and their association with poor overall survival [35]. Similarly, Sivakumar et al.
showed the tumor evolution landscape of breast cancer, identifying higher frequencies of
polyclonal acquired alterations associated with resistance to endocrine therapy [36].

Results from the PALOMA-3 study highlighted the involvement of PI3K, AKT, RB1,
E2F, or CCNE1 as intrinsic and acquired mechanisms of resistance to CDK4/6i [20,21,37–39].
Additionally, several potential mechanisms, such as loss of ER expression, increased expres-
sion of ER or its cofactors, and post-translational ER modifications including methylation,
acetylation, and SUMOylation, have been studied in the context of HR-positive mBC sensi-
tivity to therapies [40,41]. In addition, the delocalization of the ER to the cellular membrane,
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enabling ER crosstalk with other proteins, including growth factor receptors, is involved in
the development of the endocrine-resistant phenotype [42].

Despite effective hormonal and CDK4/6i treatment, the development of new addi-
tional targeted therapies is needed to prolong the survival of patients [43]. Recently, new
estrogen receptor antagonists (i.e., lasoxifene, bazedoxifene, amcenestrant, camizestrant,
and elacestrant) have been developed and evaluated in preclinical and clinical studies alone
or in combination with CDK4/6i [13,44–52], demonstrating their superiority to fulvestrant,
especially for patients harboring ESR1 mutations.

Hence, it is necessity to discover new drugs and biomarkers to identify patients
who may or may not respond to specific treatments, thereby improving their long-term
survival. From the perspective of future precision medicine, liquid biopsy investigation is
advantageous, owing to its low invasiveness and high potential to monitor and support
the best therapeutic choice for patients.

5. Conclusions

The present study demonstrates that CDK4/6 inhibition in combination with either
aromatase inhibitors or fulvestrant does not preclude hormonal therapy failure caused by
ESR1 mutations.
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