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Abstract: The primary intervention for pre-eclampsia (PE) remains iatrogenic delivery, which can be
very preterm and not optimal for the fetus. Although many efforts have been made to prevent and
manage PE, there is still a dearth of drugs to treat its pathophysiological progression. Pravastatin
(PRA), a hydrophilic statin, has gained interest for the prevention and treatment of PE. The aim of
the present study was to evaluate the ability of PRA to modulate factors involved in placentation,
such as Epidermal Growth Factor-Like Domain 7 (EGFL7), in human chorionic villous culture from
healthy controls and women with PE. A total of 18 women were enrolled: 10 controls and 8 cases.
Chorionic villous explants were maintained in culture for 24 h with or without 10 µM Pravastatin,
and the expression of EGFL7 and NOTCH1 pathway members was evaluated by qRT-PCR and
Western blot analysis. The rationale of the present study was to establish an ex vivo model to
identify potential different responses to PRA treatment of chorionic villous explants in order to clarify
the molecular mechanism of PRA in the prevention and treatment of PE and to predict whether
there are specific clinical conditions that modulate the response to the drug treatment. Within PE
patients, two different groups were identified: the high responders, whose villous cultures exhibit
significantly increased expressions of the EGFL7 and Notch pathways after PRA incubation; and
the low responders, who are high-risk PE patients in which prophylaxis failed to prevent PE and
PRA was not able to modulate EGFL7 expression. In conclusion, we identified EGFL7 as a new factor
regulated by PRA, placing interest in early discrimination between low- and high- risk women, in
which the well-known pharmacological prophylaxis seems to be ineffective, and to explore new
potential prevention strategies.

Keywords: pre-eclampsia; pravastatin; EGFL7; notch signaling; chorionic villi; placenta

1. Introduction

Maternal endothelial dysfunction is the main pathophysiological mechanism respon-
sible for systemic complications and the clinical scenario of pre-eclampsia (PE) [1,2]. An
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imbalance of circulating levels of proangiogenic (Placental Growth Factor: PlGF; Vascular
Endothelial Growth Factor: VEGF) and antiangiogenic factors (soluble Fms-like tyrosine Ki-
nase 1: sFlt-1) has been detected in PE [3]; thus, their assessment (sFlt-1:PlGF ratio) appears
clinically relevant in disease onset prediction, severity, and timing of delivery [4–7].

Two decades ago, we and others identified a new secreted angiogenic factor, Epidermal
Growth Factor-Like Domain 7 (EGFL7), whose expression was initially believed to be
exclusively restricted to endothelial cells [8–10]. However, we later demonstrated that
EGFL7 is expressed in the human placenta, not only in endothelial cells of the chorionic
villi, but also in the syncytiotrophoblast and cytotrophoblast cells. We also highlighted
the ability of this secreted factor to regulate the migration and invasion of the trophoblast
through the activation of mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-
kinase (PI3K), and NOTCH signaling pathways [11,12]. Moreover, we previously provided
evidence that circulating levels of EGFL7 are significantly higher in patients affected by
PE when compared to normal pregnancies, while EGFL7 placental levels in pre-eclamptic
women are lower than those measured in healthy control placentas [11,13]. Consistent with
these results, villous explant cultures obtained from placentas affected by PE displayed
increased release of EGFL7 in the culture medium when compared to those from normal
placentas. These results suggest that the increased release of placental-derived EGFL7 and
its increased circulating levels, with the possible contribution of diffuse damaged maternal
endothelial cells, are associated with the clinical manifestation of PE [13].

To this day, elective therapy for PE requires early delivery with removal of the pla-
centa. Although early delivery is always beneficial for the mother, it may not be optimal
for the fetus. Among the pharmacological approaches, one of the most discussed ones
is certainly represented by the use of statins. Pravastatin (PRA) is a lipid-lowering drug
with hydrophilic activity widely employed to reduce the risk of cardiovascular events in
the general population [14]. Indeed, PE shares many pathophysiological characteristics
with cardiovascular diseases, such as inflammation and endothelial dysfunction. Based
on these premises, the use of statins has gained interest for the prevention of PE. Statins
are competitive inhibitors of hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase,
the rate-limiting enzyme in cholesterol biosynthesis. Indeed, statins decrease intrahepatic
cholesterol levels, leading to increased expression of low-density lipoprotein (LDL) recep-
tors and the reuptake of circulating lipids. Epidemiological data collected to date suggest
that statins have no major teratogenic effects in pregnancy and, among these, those with
the best pharmacokinetic and safety profile are hydrophilic statins, such as PRA [15–22]. In
the last years, in vitro studies, case reports and some clinical trials have highlighted the
potential of PRA in the prevention and treatment of PE [15–21]. Despite the presence of
conflicting data in the literature on this matter, it is believed that PRA can play an important
role in the prevention of PE when administered early in high-risk patients [20,22].

The aim of our pilot observational study was to assess the ability of PRA to modulate
EGFL7 expression in human chorionic villous explant culture from both uncomplicated
pregnancies and from women with PE, in order to evaluate pleiotropic effects of this
molecule that can be used in the prevention and treatment of PE.

2. Materials and Methods
2.1. Study Population, Setting and Data Collection

This is a pilot observational study conducted at Fondazione Policlinico Universitario
Agostino Gemelli, IRCCS and the Department of Biomedicine and Prevention, University
of Rome Tor Vergata, Italy, between May 2019 and June 2023. A total of 18 women were en-
rolled: 10 controls and 8 cases. Healthy pregnant women with uncomplicated pregnancies
and normally grown fetuses were included as controls. Cases (PE) included only women
with early-onset pre-eclampsia, diagnosed before 34 gestational weeks and associated with
fetal growth restriction (FGR), defined according to the International Society for the Study
of Hypertension in Pregnancy (ISSHP) 2018 Guidelines [23]. FGR was defined as a fetus
with an estimated weight or abdominal circumference < 3rd percentile for gestational age or



Biomedicines 2024, 12, 1929 3 of 14

with an estimated weight or abdominal circumference < 10th percentile and with abnormal
umbilical artery pulsatility index (UA PI) > 95th percentile, according to the definitions
reported by Gordjin et al. [24].

The inclusion criteria for both groups were singleton pregnancies with spontaneous
conception; certain gestational age; absence of fetal malformations and/or chromosomal
abnormalities and/or congenital fetal infections; maternal age > 18 years; and ability to
express informed consent. The exclusion criteria were as follows: multiple gestations;
medically assisted procreation procedures of the heterologous type; maternal comorbidities
influencing the diagnosis and/or evolution of PE (nephropathy, heart disease, antiphos-
pholipid antibodies syndrome); age < 18 years; language barrier; and inability to express
informed consent.

According to the hospital protocol, women with PE received anti-hypertensive treat-
ment as needed, steroid prophylaxis for fetal prematurity and magnesium sulfate ad-
ministration immediately before delivery in case of gestational age < 32 weeks and/or
in case of PE with severe features. PE prophylaxis with low-dose aspirin (LDA) and/or
low-molecular-weight heparin (LMWH) was performed, when indicated, according to
maternal obstetric or pathological past history.

Maternal data, including maternal age, BMI (body mass index), gravidity and parity,
mode of conception, past medical and obstetric history, pharmacological treatment, and
Doppler findings at diagnosis and delivery, were collected. The collected perinatal variables
analyzed were birthweight (g); birthweight centile; neonatal gender; Apgar score at first
and at fifth minute; and admission to neonatal intensive care unit (NICU). Birthweight
percentile was calculated according to Youdkin et al. [25]. Neonates whose birthweight
was lower than 10th percentile were defined as being small for gestational age (SGA).

All placental tissues of women with PE were sent for pathologic examination and ana-
lyzed according to the Amsterdam Placental Workshop Group Consensus Statement [26].

2.2. Ex Vivo Chorionic Villous Explant Cultures

For both groups, collection of the placenta was performed after caesarean delivery.
Explants of chorionic villi were prepared as described by Miller et al. [13,27]. Briefly, 1 cm3

villous sections were isolated postdelivery from the parasagittal plane with respect to the
umbilical cord insertion of each placenta. Sections were extensively washed in phosphate-
buffered saline (PBS, Corning, Mediatech, Manassas, VA, USA) to remove maternal blood
and either immediately frozen in liquid nitrogen or cultured for 24 h in 1 mL of RPMI
1640 medium (Corning), supplemented with 2 mM L-glutamine (Lonza, Milan, Italy),
50 U/mL penicillin and 50 mg/mL streptomycin (Lonza), and 1 mM sodium pyruvate
(Sigma-Aldrich, Saint Louis, MO, USA), with or without 10 µM PRA (Sigma-Aldrich),
in 24-well plates at 37 ◦C and 5% CO2. For each patient, 30–40 mg of villi per well was
cultured in 24-well plates (three wells for each condition, − and + PRA). PRA concentration
was chosen based on preliminary dose-response experiments for the identification of the
lowest effective concentration, according to the literature data [28–31]. Phase-contrast
images were taken under a Leitz Diavert microscope connected to a Nikon DS-Fi1 camera.
After 24 h of culture, chorionic villous explant cultures were collected, frozen in liquid
nitrogen, and stored at −80 ◦C until analysis.

2.3. qRT-PCR Analysis

RNA from chorionic villous explant cultures was extracted using the TRIZOL Reagent
(Roche Diagnostics GmbH, Mannheim, Germany), according to the manufacturer’s pro-
tocol. RNA quality was examined by evaluating the presence of ribosomal RNA bands
in agarose gels. RNA was reverse-transcribed using random primers and the QuantiTect
Reverse Transcription Kit (Qiagen, Hilden, Germany), following the manufacturer’s spec-
ifications. Gene expression was measured using iTaq Universal SYBR Green Supermix
(Biorad Laboratories, Hercules, CA, USA). qRT-PCR was performed using the LightCycler
96 Real Time PCR System (Roche Diagnostics GmbH). Differences in gene expression were



Biomedicines 2024, 12, 1929 4 of 14

quantified using the ∆∆Ct method with normalization to 18S ribosomal RNA gene. Specific
primers for EGFL7, NOTCH1, hairy and enhancer of split-related protein 1 (HEY1), hairy
and enhancer of split-related protein 2 (HEY2), and 18S were designed using Primer Express
software (Applied Biosystems in Life Technologies, Monza, Italy), and their efficiency was
tested using standard curves. Primer sequences, amplicon size, and gene accession number
are listed in Table 1.

Table 1. Primer sequences, amplicon size, and gene accession number.

Gene Primer Sequence AL (bp) Accession No.

EGFL7 (forward) 5′-TCGTGCAGCGTGTGTACCAG-3′
92 NM_016215.5EGFL7 (reverse) 5′-GCGGTAGGCGGTCCTATAGATG-3′

NOTCH1 (forward) 5′- GCGGGATCCACTGTGAGAA -3′
58 NM_0176617.5NOTCH1 (reverse) 5′- CCGTTGAAGCAGGAGCTCTCT -3′

HEY1 (forward) 5′-CATCGAGGTGGAGAAGGAGAGT-3′
66 NM_012258.4HEY1 (reverse) 5′-GACATGGAACCTAGAGCCGAACT-3′

HEY2 (forward) 5′-CGACCTCCGAGAGCGACAT-3′
67 NM_012259.3HEY2 (reverse) 5′-CTTTGCCCCGAGTAATTGTTCT-3′

18S (forward) 5′-GAGGCCCTGTAATTGGAATGAG-3′
120 NR_14582018S (reverse) 5′-GCAGCAACTTTAATATACGCTATTGG-3′

AL (bp): amplicon length (base pair).

2.4. Western Blot Analysis

Flash-frozen chorionic villous explant cultures were homogenized in lysis buffer
(50 mM Tris–HCl pH 7.5, 150 mM NaCl, 0.5% NP-40, 5 mM ethylenediaminetetraacetic
acid (EDTA), 0.5% sodium deoxycholate, 1 mM phenylmethylsulfonyl fluoride, 20 mM
β-glycerophosphate, 1 mM sodium orthovanadate) containing an EDTA-free protease
inhibitor cocktail (Roche, Penzberg, Germany). The Bradford assay was used to determine
protein content. Protein samples (40 µg) were separated by electrophoresis on 10% (v/v)
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) gels and trans-
ferred to polyvinylidene difluoride (PVDF) Transfer Membrane HybondTM (Amersham
Biosciences). Nonspecific antibody binding was prevented by incubating the membrane
in 5% (w/v) non-fat dry milk in Tris-buffered saline (TBS) containing 0.1% (v/v) Tween
20 (TBS/T) for 1 h at room temperature. Membranes were then incubated overnight at
4 ◦C with rabbit anti-EGFL7 (Abcam, Cambridge, UK, cat. ab256451, 1:1000) or mouse
anti-GAPDH (clone 6C5, Santa Cruz, CA, USA, cat. sc-32233, 1:2000), all diluted in TBS/T
with 5% (w/v) bovine serum albumin (BSA). Horseradish peroxidase conjugated secondary
anti-rabbit and anti-mouse antibodies (Amersham Biosciences) were diluted in 5% (w/v)
non-fat dry milk containing TBS/T (1:10,000 and 1:5000, respectively) and were incubated
with the membranes for 1 h at room temperature. Immunoreactive bands were detected
by LiteAblot Turbo chemiluminescent substrate (Euroclone, Pero, Italy) according to the
manufacturer’s protocol. Densitometric analysis of the bands was performed using ImageJ
ij154-win-java8 software.

2.5. Statistical Analysis

Continuous variables were expressed as mean ± standard error of the mean (SEM),
or as median with interquartile range (IQR) if not normally distributed, and categorical
variables were displayed as frequencies. Data were analyzed by using either parametric
(Student’s t test) or nonparametric (Mann–Whitney and Kruskal–Wallis tests) tests, ac-
cording to the results obtained after normality test (the Shapiro–Wilk test) and variance
analysis (using the Brown–Forsythe or F test, as appropriate). Dunnett’s test was used
after Kruskal–Wallis test. The software used included GraphPad Prism 8, SigmaPlot 12.0,
and the Statistical Package for Social Science (SPSS) Version 25. p-values < 0.05 were
considered significant.
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3. Results
3.1. Maternal and Neonatal Clinical Data

We included in our analysis 18 patients, represented by 10 healthy controls and
8 women affected by PE, as described above. Maternal socio-demographic characteristics
and main laboratoristic findings are summarized in Table 2. All continuous variables
showed a parametric distribution, except for maternal parity and maximum values of
aspartate aminotransferase and 24 h proteinuria. As expected, patients with PE exhib-
ited significantly higher values of both systolic and diastolic blood pressure, as well as
24 h proteinuria.

Table 2. Maternal socio-demographic characteristics and laboratory findings of controls (n = 10) and
cases (n = 8).

Variable Controls (n = 10) PE Patients (n = 8) p-Value

Maternal age (years) 34.60 ± 1.13 31.50 ± 2.51 0.244

Parity 0.00 (0.00) 0.00 (0.25) 0.408

Pre-conceptional BMI 21.64 ± 8.43 24.35 ± 14.63 0.131

Gestational weight gain 11.62 ± 1.45 12.00 ± 1.00 0.835

Second Trimester mean uterine arteries PI > 95◦ pc 3/10 (30.00%) 5/8 (62.50%) 0.342

Maximum SBP (mmHg) 115.50 ± 2.83 164.63 ± 6.92 <0.0001

Maximum DBP (mmHg) 71.20 ± 2.31 101.63 ± 4.73 <0.0001

Minimum PLT count 219.400 ± 14.740 190.630 ± 24.530 0.309

Maximum Creatinine (mg/dL) level 0.43 ± 0.08 0.66 ± 0.09 0.092

Maximum AST (UI/L) level 16.00 (18.00) 14.00 (28.50) 0.965

Maximum LDH (mg/dL) level 214.75 ± 17.68 245.50 ± 19.98 0.268

Maximum 24 h proteinuria (gr/L) level 0.00 (0.00) 1.50 (7.20) 0.006

Comparison between controls and cases; PE: pre-eclampsia; BMI: body mass index; PI: pulsatility index; SBP:
systolic blood pressure; DBP: diastolic blood pressure; PLT: platelets; AST: aspartate aminotransferase; LDH:
lactate dehydrogenase; The bold indicates significant values.

Neonatal outcomes in controls and cases are described in Table 3. Women affected
by PE were more likely to deliver earlier, and their infants were significantly smaller than
controls; a statistically significant difference was also observed in Apgar 5th.

Table 3. Perinatal and neonatal outcome (The bold indicates significant values).

Variable Controls (n = 10) PE Patients (n = 8) p-Value

Gestational age at delivery (weeks) 38.78 ± 16.54 31.66 ± 8.74 <0.0001

Birthweight (g) 3547.00 ± 138.13 1277.50 ± 117.59 <0.0001

Birthweight centile 66.70 ± 9.18 3.57 ± 1.69 <0.0001

Apgar 5th 9.56 ± 0.18 8.63 ± 0.18 0.002

3.2. Effect of Pravastatin on EGFL7 Expression in Ex Vivo Chorionic Villous Explant Cultures

Placental levels of EGFL7 were measured in chorionic villous explants from the control
and PE placentas immediately after dissection. In agreement with what was previously
reported [11], the qRT-PCR results demonstrated that EGFL7 expression was significantly re-
duced in chorionic villi obtained from women with PE compared to the controls (p = 0.0044;
Figure 1).

Since PRA was recently evaluated for treatment and/or prophylaxis of PE, we tested
whether PRA was able to modulate EGFL7 expression. To this end, chorionic villous ex-
plants were cultured for 24 h with or without 10 µM PRA (Figure 2). qRT-PCR demonstrated
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that PRA did not affect its expression in healthy control villi, while it slightly increased
EGFL7 gene expression in villous cultures obtained from PE patients, although statistical
significance was not met when PE patients were considered as one group (Figure 2B).
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(B): qRT-PCR analysis demonstrating reduced expression of EGFL7 in PE villous explant samples
compared to the healthy controls. Scale bar in panel images = 250 µM. Statistical analysis was
performed using Mann–Whitney test (** p = 0.0044).
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Figure 2. Effect of pravastatin administration to ex vivo chorionic villous explant cultures on EGFL7
expression. (A): Representative phase-contrast images of villous explants from healthy control and
PE placenta after 24 h of culture in the presence or absence of 10 µM pravastatin (PRA). (B): qRT-PCR
analysis showing that PRA treatment did not affect EGFL7 expression in both healthy control and
PE villous cultures. Scale bar in panel images = 250 µM. Statistical analysis was performed using
Student’s t test. − and + PRA: without or with 10 µM pravastatin.
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3.3. Different EGFL7 Expression Modulation after Pravastatin Treatment in Pre-Eclampsia
Chorionic Villous Explant

According to the levels of EGFL7 expression in villous cultures following PRA treat-
ment, two groups of patients with pregnancies complicated by PE could be identified,
which were classified into high and low responders. Chorionic villous cultures from the
high-responders group exhibited significantly increased EGFL7 gene expression after PRA
treatment (n = 4, p = 0.0467; Figure 3A), whereas those from women identified as low
responders showed no significant changes in EGFL7 levels following PRA treatment (n = 4;
Figure 3B). The significant increase in EGFL7 expression in villous explant cultures from
high-responder PE patients was also confirmed at the protein level by Western blot analysis
(p = 0.028, Figure 3C,D).
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Based on these results, we investigated the maternal and biochemical characteristics of
the two groups of PE patients (Table 4), as well as their perinatal outcomes and histopatho-
logical placental findings (Tables 5 and 6). No statistically significant differences were noted
between the two groups in terms of maternal characteristics or perinatal outcomes. In the
low-responder group, all women presented with an abnormal second-trimester uterine
artery mean pulsatility index, whereas in the high-responder group, this parameter was
abnormal in only half of the cases. A significant difference was also detected in the phar-
macological treatment performed in utero: 75% of the low-responder patients underwent
prophylactic treatment with low-dose aspirin (LDA 150 mg/day) (p = 0.028), and 50%
underwent prophylaxis with low-molecular-weight heparin (LMWH), whereas none of
the high-responders received either aspirin or heparin during pregnancy. Among the low-
responder patients, one had taken LDA alone for high risk of PE at the combined test; the
other two were treated with LDA in association with LMWH for different clinical findings:
the first one was diagnosed with antiphospholipid syndrome with persistently positive
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lupus anticoagulant and a previous history of both adverse obstetric and thrombotic events
(intrauterine death and cerebral sinovenous thrombosis). The second one was affected
by chronic hypertension and thrombophilia. In all these cases, LDA was correctly started
before 14 weeks’ gestation.

Table 4. Maternal socio-demographic characteristics and biochemical findings of women with
pre-eclampsia according to EGFL7 expression in response to pravastatin treatment.

Variable Low-Responder (n = 4) High-Responder (n = 4) p-Value

Maternal age (years) 35.50 ± 2.22 27.50 ± 3.71 0.114
Parity 0.50 (1.00) 0.00 (0.00) 0.343

Pre-conceptional BMI 25.69 ± 2.42 23.02 ± 1.71 0.402
Gestational weight gain 12.25 ± 1.60 11.75 ± 1.44 0.824

LDA 3/4 (75%) 0/4 (0%) 0.028
LMWH 2/4 (50%) 0/4 (0%) 0.102

Uterine arteries mean PI > 95◦ pc 4/4 (100%) 2/4 (50%) n.a.
Maximum SBP (mmHg) 163.75 ± 6.54 165.50 ± 13.43 0.911
Maximum DBP (mmHg) 102.50 ± 7.26 100.75 ± 7.16 0.869

Minimum PLT count 184.250 ± 40.171 197.000 ± 68.327 0.817
Creatinine (mg/dL) maximum level 0.59 ± 0.18 0.72 ± 0.99 0.589

Maximum AST (UI/L) level 47.50 (108.75) 11.00 (3.00) 0.200
LDH (mg/dL) maximum level 236.00 ± 17.34 255.00 ± 38.76 0.670
Proteinuria maximum (gr/L) 2.95 (7.20) 1.50 (4.93) 0.686

BMI: body mass index; LDA: low-dose aspirin; LMWH: low-molecular-weight heparin; SBP: Systolic blood pres-
sure; DBP: Diastolic blood pressure; PLT: platelets; AST: aspartate aminotransferase; LDH: lactate dehydrogenase;
The bold indicates significant values.

Table 5. Perinatal and neonatal outcome of women with pre-eclampsia according to EGFL7 expression
in response to pravastatin treatment.

Variable Low-Responder (n = 4) High-Responder (n = 4) p-Value

Gestational age at delivery (weeks) 32.00 ± 1.67 31.32 ± 0.84 0.728
Birthweight (g) 1305.00 ± 233.00 1250.00 ± 98.68 0.835

Birthweight centile 1.65 ± 0.62 5.45 ± 3.25 0.289
Apgar 5th 8.50 ± 0.29 8.75 ± 0.25 0.537

Table 6. Histopathological findings of placental tissues obtained of women with pre-eclampsia.

Maternal Vascular Perfusion Low-Responder (n = 4) High-Responder (n = 4)

Infarcts 2/4 (50%) 0/4 (0%)
Accelerated villous maturation 4/4 (100%) 4/4 (100%)

Villar agglutination 2/4 (50%) 3/4 (75%)
Villar hypoplasia 3/4 (75%) 0/4 (0%)

Increased syncytial knots 4/4 (100%) 4/4 (100%)

Fetal Vascular Perfusion Low-Responder (n = 4) High-Responder (n = 4)

Avascular villi 3/4 (75%) 1/4 (25%)
Intramural fibrin deposition 1/4 (25%) 0/4 (0%)

Stem vessel obliteration 0/0 (0%) 0/0 (0%)
Thrombosis 0/0 (0%) 0/0 (0%)

Placental histopathology analyzed according to the Amsterdam Placental Workshop Group Consensus State-
ment [26].

Histopathological analyses of placental tissues showed villous hypoplasia in 75% of
the samples in the low-responder group, a condition not observed in the placentas of high
responders. Similarly, sites of placental infarcts were observed in 50% of the low-responder
patients, but not in the high-responders group (Table 6).
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3.4. Effect of Pravastatin Treatment on NOTCH1 Signaling Pathway

Activation of the NOTCH signaling pathway has been recognized as important for
proper placental development and function [12,32,33]. In fact, expression of different
Notch receptors, ligands, and targets is reduced in the placenta of women affected by
PE [11,34,35]. Based on previous studies demonstrating that EGFL7 modulates NOTCH
signaling [12], we investigated whether PRA treatment also affected this pathway. To
this end, we performed qRT-PCR analyses for NOTCH1 and its target genes hairy and
enhancer of split-related protein 1 (HEY1) and hairy and enhancer of split-related protein 2
(HEY2) on chorionic villous explant cultures obtained from healthy controls and high and
low-responder PE patients following PRA treatment. Our results show that NOTCH1 and
HEY1 and HEY2 were upregulated by PRA in high-responder PE (Figure 4); here, statistical
significance was met for HEY1 and HEY2, but not for NOTCH1 (p = 0.0290, p = 0.0276
and p = 0.2166, respectively). Together, these data indicate that in the high-responder PE
placentas, PRA treatment upregulates EGFL7 and activates the Notch pathway. In contrast,
in villi obtained from healthy controls and low-responder PE placentas, PRA treatment did
not affect NOTCH1, HEY1, and HEY2 gene expression (Figure 4).
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Figure 4. Expression analysis of NOTCH1 and NOTCH target genes in chorionic villous explant
culture samples from healthy control and high- and low-responder PE patients untreated or after
pravastatin (PRA) treatment. qRT-PCR analysis of NOTCH1, hairy, and enhancer of split-related
protein 1 (HEY1) and hairy and enhancer of split-related protein 2 (HEY2) gene expression in untreated
or PRA-treated villi samples, indicating that PRA treatment significantly increased the expression of
NOTCH1 target genes in high-responder PE villous cultures, while it did not affect their expression
in both healthy controls and low-responder PE villous cultures. Statistical analysis was performed
using Student’s t test (* p = 0.0290 HEY1; * p = 0.0276 HEY2).

4. Discussion

In agreement with our previous study on whole placental tissue [11], here we show
that expression of EGFL7 is strongly reduced in villi obtained from placentas of women
affected by PE compared to healthy controls. When incubated with PRA, only a slight
increase in EGFL7 gene expression in villous cultures obtained from PE patients was
observed. However, amongst the patients affected by PE, two different groups could be
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identified: a high-responder group, where chorionic villi exhibit significantly increased
expression of EGFL7 after PRA incubation, and a low-responder group, which showed no
significant changes in EGFL7 expression after PRA incubation.

For the first time, in the present study, we investigated the effects of PRA specifically
on the expression of EGFL7. Indeed, EGFL7 should be considered part of the panel of pro-
and anti-angiogenic factors, which are known to be dysregulated in IUGR and PE [36]. In
fact, while EGFL7 is highly downregulated in placental tissues of women with PE [11],
circulating levels of EGFL7 are more than three times higher in women affected by early-
onset PE compared to controls and isolated IUGR. Moreover, the dosage of circulating
levels of EGFL7 has an additional diagnostic and prognostic value in comparison to s-Flt1
and PlGF or s-Endoglin (sEng), since it is not only detectable in maternal blood before
the clinical manifestation of PE, but it also allows us to efficiently discriminate between
pregnancies affected by PE and those with isolated IUGR [13,37]. We hypothesized that the
increased circulating levels of EGFL7 are the direct result of maternal systemic involvement
and diffuse endothelial damage specific to PE, which is not present in controls and isolated
IUGR. These conditions, i.e., healthy pregnancy and isolated IUGR, are characterized by
low detectable maternal circulating levels of EGFL7 throughout gestation [36,37].

For all these reasons, we tested the effect of PRA on EGFL7 expression. The ability of
PRA to ameliorate or prevent the clinical scenario of PE by modulating the expression of
angiogenetic factors has emerged in several in vitro and in vivo studies [38–41]. In vitro
studies have demonstrated the ability of PRA to reduce sFlt1 secretion by human umbilical
venous endothelial cells, trophoblast cells, and placental explants taken from women
affected by PE; moreover, PRA has been shown to reduce oxidative stress by activating the
heme-oxygenase 1 enzyme [40,41]. Studies on mouse models of PE have shown that PRA
is able to reduce the secretion of sFlt1 and increase the secretion of PlGF, improving the
clinical phenotype of the disease [38]. It has been shown that treatment with PRA results
in increased proliferation, migration, and tube formation ability of umbilical-cord-blood-
derived endothelial colony-forming cells (ECFCs), which are a highly proliferative subtype
of endothelial progenitor cells (EPCs). These effects were accompanied by augmented
AKT- and eNOS-phosphorylation, increased expression levels of heme oxygenase-1 (HO-1),
vascular endothelial growth factor A (VEGF-A), and PlGF and decreased expression levels
of sFlt-1 and Eng [15]. These studies have contributed to a better understanding of the
pleiotropic function of statins and have also provided a promising basis for the use and
role of PRA in the treatment and prevention of PE [20,42].

Our study initially investigated the ability of PRA to induce EGFL7 expression by
placental explants taken from women affected by PE, considering all patients as one
group. Interestingly, not all chorionic villi showed a comparable response to PRA. Indeed,
we identified one group, the low-responder group, which, despite having comparable
maternal and perinatal conditions, did not show increased expression of EGFL7 following
PRA treatment. It is noteworthy that this group mostly comprises women who, despite
correctly following the pharmacological prophylaxis with LDA (75% of cases) and LMWH
(50% of cases) due to high-risk PE medical conditions, still developed the early and more
severe form of the disease, complicated by IUGR, maternal and fetal placental malperfusion,
and preterm delivery [43–45]. Another group of patients was identified, whom we called
high responders, for which PRA was able not only to induce the expression of EGFL7, but
also to activate the Notch signaling pathway, as demonstrated by the increased expression
of the Notch target genes HEY1 and HEY2. The concomitant upregulation of EGFL7 and
activation of the Notch pathway has been previously shown in trophoblast cells and in other
cell systems [12]. Our studies suggest a potential novel molecular mechanism underlying
the effect of PRA on chorionic villi, a hypothesis that is further supported by previous
observations that statins are able to regulate Notch signaling activity [46–48].

Our data are the first to reveal that in the group where standardized pharmacological
prophylaxis has failed in preventing PE, PRA was also unable to modulate EGFL7 expres-
sion. It is possible that the failure to induce EGFL7 expression may be a consequence of
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the treatments administered during pregnancy. However, this hypothesis does not apply
to all patients as not all were treated. Alternatively, our findings may reflect an aspect of
the still unknown and unexplained reasons some patients do not respond to conventional
pharmacological prophylaxis. PRA belongs to the pharmacological class of statins which,
in addition to their lipid-lowering properties, may also exhibit some anti-inflammatory
effects [49], including reduction in the adhesion of inflammatory cells by diminishing
the expression of nuclear factor-kappa B (NF-kB), activator protein-1, and vascular cell
adhesion molecule (VCAM), which are molecular pathways also regulated by EGFL7, in
order to reduce endothelial cell activation in normal and inflammatory conditions [50–54].
This shared mechanism of action may be one possible explanation for our results. Clin-
ically, we observed that LDA, sometimes associated with LMWH, did not prevent the
onset of PE. Additionally, in vitro, in the same women, PRA failed to restore the expres-
sion of EGFL7 in chorionic villi, which is crucial for maintaining proper endothelial and
trophoblast functions.

The main limitation of our study is the small number of placental villi analyzed that
prevented us from making final conclusions. This was, in part, due to the experimental
procedure, that requires setting up chorionic villous explant cultures soon after delivery,
which was often occurring in conditions of emergency for PE patients. The small number
of samples was also due to the strict inclusion criteria, which, on the other hand, represents
the main strength of this study. The restricted inclusion/exclusion criteria allowed us to
reduce the incredibly high number of clinical and biological variables related to pregnancy,
which otherwise would have further complicated the interpretations of the results.

5. Conclusions

In conclusion, our study identified the modulation of EGFL7 levels as a potential new
mechanism of action for PRA, suggesting a novel potential pharmacological approach for
the prevention and treatment of PE.

We demonstrated that PRA treatment of placental villi effectively regulates EGFL7
expression, which is normally significantly reduced in PE placentas and elevated in the
blood of PE patients compared to controls. Restoring EGFL7 to its physiological levels
could thus provide a solid biological basis for using this new pharmacological strategy
against PE.

Additionally, our research identified a subgroup of PE patients, termed “low respon-
ders”, in which prophylaxis with LDA, sometimes combined with LMWH, failed to prevent
PE. In these patients, PRA also failed to modulate EGFL7 expression in chorionic villous
cultures, suggesting a likely failure in preventing PE as well. A prospective study is war-
ranted to identify these high-risk women early, given the ineffectiveness of the current
pharmacological approaches, and to explore new potential prevention strategies.

Our research results not only support the use of PRA in the prevention of PE, as
suggested by some clinical trials, but also highlight the importance of early and, if possible,
pre-conceptional assessment of high-risk women. This assessment aims to identify candi-
dates who may not respond to standard pharmacological prophylaxis. By focusing on these
individuals, we can better understand the molecular and clinical mechanisms underlying
the failure of conventional treatments and develop personalized and tailored approaches.
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