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Abstract

Diagnostic imaging has significantly grown over the last thirty years as indispensable sup-

port for diagnostic, prognostic, therapeutic and monitoring procedures of human diseases.

This study explored the effects of low-dose X-ray medical diagnostics exposure on female

fertility. To aim this, cumulus-oocyte complexes (COCs) recovered from the ovaries of

juvenile sheep and human ovaries were used as complementary models for in vitro stud-

ies. In the sheep model, the effects of low-dose X-rays on oocyte viability and develop-

mental competence were evaluated. In human ovaries originated from two age group (21–

25 and 33–36 years old) subjects with gender dysphoria, X-rays effects on tissue morphol-

ogy, follicular density and expression of apoptosis-related (NOXA, PUMA, Bcl2, Bak,

ȖH2AX) and cell cycle-related genes (p21 and ki67) were investigated. It was noted that in

sheep, the minimum dose of 10 mGy did not influence most of examined parameters at

oocyte and embryo levels, whereas 50 and 100 mGy X-ray exposure reduced oocyte bioe-

nergetic/oxidative activity but without any visible effects on oocyte and embryo develop-

ment. In addition, blastocyst bioenergetic/oxidative status was reduced with all used

doses. Overall data on human ovaries showed that low-dose X-rays, similarly as in sheep,

did not alter any of examined parameters. However, in women belonging to the 33–36

year group, significantly reduced follicular density was observed after exposure to 50 and

100 mGy, and increased NOXA and Bax expression after exposure at 50 mGy. In conclu-

sion, used low-doses of X-ray exposure, which resemble doses used in medical
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diagnostics, produce weak damaging effects on female fertility with increased susceptibil-

ity in advanced age.

Introduction

In the last thirty years, diagnostic imaging had a considerable development, thanks to signifi-
cant innovation of image detectors and computer science, becoming an indispensable support
for diagnosis, prognosis and monitoring of diseases, and the implementation of interventional
diagnostic and therapeutic procedures [1,2]. Today, the medical use of ionizing radiation is the
main exposure source of artificial radiation for the population, and it is constantly increasing
in all countries with modern health care systems. X-ray imaging comprises 80 to 90 percent of
all imaging procedures typically divided into "conventional" and "contrast" techniques. How-
ever, frequency of contrast studies decreased from 1970 to 1980, as competing techniques such
as endoscopy, ultrasound and computed tomography (CT) became available [3].

Mettler et al. [4] reported an increase in the annual effective dose per capita (data collected
from 1980–2006) from 0.54 millisieverts (mSv; 1 SvÅ 1 gray (Gy); [5]) to about 3.0 mSv, due
to the use of CT and nuclear medicine techniques. An updated version of this report (data col-
lected from 2006 to 2016) showed that the effective dose from diagnostic and interventional
medical procedures is estimated at 2.3 mSv [6]. Interestingly, comparisons of radiation doses
from diagnostic examinations with average natural back-ground radiation, show that the effec-
tive doses for normal-sized adults undergoing body CT and chest x-ray are approximately 3.5
mSv and 0.1 mSv, respectively, which is the equivalent to 1 year and 10 days of natural back-
ground radiation humans are exposed as part of our normal lives, respectively, [7–9]. The radi-
ation doses of some CT and nuclear medicine studies fall in the range between 10 and 100
mSv. A single CT of the abdomen may produce a dose of around 10 mSv, and patients who
undergo multiple CTs or a single multiphasic CT fall into this dose range [7].

The biological response to radiations varies between tissues and organs, and gonads are
considered highly sensitive to radiation damage [10–12]. Ovaries contain a limited number of
resting oocytes, which become reduced with increasing age and cannot be regenerated over a
lifetime. As age progresses, subsequent ovulations and atresia determine progressive depletion
of the follicular population [13]. When the follicle reserve is exhausted, usually in women
around fifties, menopause occurs as a direct consequence of ovarian senescence [5]. Therefore,
any factor that can damage the ovary unavoidably can accelerate the physiological aging and,
consequently, the onset of ovarian failure, in terms of loss of primordial follicle reservoir,
impaired fertility and premature menopause.

Most of information on X-ray radiation effects on the ovary comes from studies on women
receiving pelvic irradiation during treatments of malignant tumours of the abdomen, cra-
niospinal irradiation for the treatment of brain tumours or total body irradiation (TBI) before
bone marrow transplantation [14–16]. Ovarian failure has been reported in 90% of patients
after TBI (10–15.75 Gy; [14]) and 97% of females treated with abdominal irradiation (20–30
Gy) during childhood [17]. Radiotherapy causes damage to ovarian blood vessels, as well as
initiation of cortical fibrosis and follicular apoptosis [18]. Studies performed in different spe-
cies, including guinea pigs, rodents, monkeys and humans, show that the radiosensitivity of
the oocytes varies according to the follicle/oocyte stage and species [5]. In mentioned species,
oocytes near ovulation show the highest susceptibility to radiation induced mutational events.
In fact, in women, primordial oocytes are more resistant to the effects of radiation than oocytes
in growing follicles. The median lethal dose (LD50) for the human oocyte has been estimated
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to be<2 Gy [15]. While clinical evidences on effects of exposure to high-dose radiation ther-
apy on female fertility have been reported, data on the effects of low-dose exposure on the
ovary and the magnitude of risk of radiological diagnostic are still missing.

The aims of the present study were to investigate the effects of low-dose X-ray radiations
( 100 mGy) on ovarian viability and functional competence. To achieve this aim, ovine
cumulus-oocyte complexes (COCs) and human ovarian tissues were used as complementary
in vitro models. The effects of low-dose X-ray radiations have been estimated on: 1) ovine
COCs, analysed for cumulus cell apoptosis, oocyte nuclear maturation, as well as bioenergetic/
oxidative status, embryo cleavage, blastocyst formation rate and quality; and 2) human ovarian
tissues, analysed for morphology and expression of DNA damage marker čH2AX, apoptosis-
related genes, and proteins and cell cycle-related genes.

Materials and methods

Chemicals

All chemicals for in vitro cultures and analyses, unless otherwise indicated, were purchased
from Sigma-Aldrich (Milan, Italy) and Gibco1 (Life Technologies, Paisley, UK).

Cumulus-oocyte complex (COC) collection and holding. Sheep ovaries were recovered
at a local slaughterhouse (Fin. Sud Import s.r.l.; Conversano, Bari, Italy) from juvenile ewes
(age under 6 months) subjected to routine veterinary inspection (Council Directive 89/556/
ECC and subsequent modifications), and transported to the laboratory at room temperature
within 4 h of slaughtering. For COC retrieval, ovaries were processed by the slicing procedure
[19]. COCs were placed in glass vials with 1 mL of holding medium (HM) composed by 40%
(v/v) TCM-199 with Earle’s salts, 40%(v/v) TCM-199 with Hanks’ salts and 20% (v/v) fetal calf
serum (FCS) with 25 mg/mL gentamicin [20]. Holding medium was used for COC transport,
irradiation and overnight maintaining before IVM.

COC and ovarian tissue X-ray irradiation. Sample irradiation was carried out at
CRN-Radioactivity of IZS-PB (Foggia, Italy) with the RS-2400 biological irradiator, consisting
of a cylindrical X-ray tube with a tungsten cathode and a golden target. In this irradiator, the
maximum allowed anode current is 45 mA and the voltage can be varied up to 150 kV,
enabling variable quality of the irradiation beam. To obtain the required dose levels, a lead
shield was designed in order to limit the intensity of the beam. The sizing of the lead screen
was initially carried out with a PENELOPE-based system for the automated Monte Carlo sim-
ulation of electron and photon transport [21] and then dosimetry measurements with thermo-
luminescence dosimeters were carried out. The lead thickness of 1 mm gave satisfactory
results for the proposed purposes. The dosimetry control of the irradiation process was carried
out with TLD-700 thermoluminescence dosimeters. Samples were exposed with a constant
dose/rate of 0.6 mGy/s. The irradiation times were 50s for 10 mGy, 83s for 50 mGy and 166s
for 100 mGy. For the positive control, a dose/rate of 75 mGy/s was used for 33s. Irradiated and
control samples were transported back to the laboratory and kept overnight at room tempera-
ture in HM. Cryopreserved ovarian tissue samples, while included in cryovials, were inserted
into Petri dishes containing liquid nitrogen, placed in an aluminium sample holder shielded
with a lead plate suitably sized to impart to the samples the low doses of irradiation. Similarly,
ovine COCs located in glass vials with 1 mL of HM, were placed in the aluminium sample
holder as previously described. The sizing of the shielding was carried out with the aid of
Monte Carlo simulations and subsequent experimental verification with thermoluminescence
dosimeters.

In vitro maturation. On the day after irradiation, in vitro maturation (IVM) was per-
formed in TCM-199 medium with Earle’s salts, buffered with 5.87 mM HEPES and 33.09 mM
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sodium bicarbonate, supplemented with 0.1 g/L L-glutamine, 2.27 mM sodium pyruvate, cal-
cium lactate pentahydrate (1.62 mM Ca2+, 3.9 mM Lactate), 50 μg/mL gentamicin, 20% (v/v)
FCS, 10 μg/mL ovine follicle stimulating hormone (FSH), 20 μg/mL ovine luteinizing hormone
(LH) and 1 μg/mL 17Č estradiol [22]. COCs were placed in 400 μL of IVM culture medium/
well of a four-well dish (Nunc Intermed, Roskilde, Denmark), covered with pre-equilibrated
lightweight paraffin oil and incubated for 24 hours at 38.5˚C, under 5% CO2 conditions. For
each experimental condition, 20–25 COCs were analysed in each replicate and a minimum
number of three replicates were performed. After IVM, cumulus cell removal was performed
by incubation in TCM-199 with 20% FCS containing 80 IU hyaluronidase/mL and aspiration
in and out of finely drawn glass pipettes. COCs destined to microscopy analysis or those des-
tined to IVF and subsequent in vitro embryo culture underwent total or partial cumulus cell
removal, respectively.

In vitro fertilization (IVF) and in vitro embryo culture. In vitro fertilization was per-
formed in Synthetic Oviductal Fluid (SOF) medium supplemented with 2% oestrous sheep
serum (OSS) and 1 μg/mL heparin, as described by Martino et al. [19]. Briefly, frozen-thawed
spermatozoa were selected by the swim-up technique and used at the final concentration of 1.5
x 106 spermatozoa/ml. Oocytes and sperm cells were incubated for 22 h at 38.5˚C and under a
5% CO2, 5% O2 and 90% N2 atmosphere in four-well dishes. After IVF, presumptive zygotes
were partially freed of cumulus cells and cultured for 7 days in four-well dishes in SOF
medium with essential and non-essential amino acids at oviductal concentrations [23] and
0.4% BSA under mineral oil, in maximum humidified atmosphere with 5% CO2, 5% O2 and
90% N2 at 38.5˚C [19]. Embryo development was followed by conventional morphology
assessment, under phase contrast microscopy, and confirmed at day 7 (d7) by observing
embryo blastomere nuclear chromatin under epifluorescence microscopy after Hoechst stain-
ing. Blastocyst formation was assessed at d7 and blastocysts were classified according to expan-
sion and hatching status [19] as: early blastocyst (normal blastocyst with a blastocoel equal or
up to half of the embryo volume), expanded blastocyst (blastocyst with a blastocoel greater
than half of the embryo volume) and hatching or already hatched blastocyst.

Assessment of cumulus cell apoptosis by TUNEL assay. Cumulus cells, grouped accord-
ing to each experimental condition, were collected from in vitro cultured COCs, suspended in
TCM-199 with Hanks’ salts with 20% FCS and centrifuged at 300 x g for 5 min. The resulting
pellet was used for assessing the apoptotic status by Terminal Deoxynucleotidyl Transferase-
mediated dUTP Nick-End Labeling (TUNEL) assay (Click-iT1 Plus TUNEL Assay for in situ
apoptosis detection with Alexa Fluor1 dyes, Molecular Probes Life Technology, code:
C10617; [22]). The staining procedure was performed following the manufacturer’s instruc-
tions. Briefly, CCs were fixed in 4% paraformaldehyde in phosphate buffered saline solution
(PBS) for 15 min at room temperature. CCs were washed three times in PBS and then permea-
bilized with 0.5% Triton X-100 for 20 min. CCs were washed with deionized water before
labeling. CCs were placed in 50 μl drops of TUNEL reagent and incubated in the dark for 1 h
at 37˚C in a humidified chamber. After incubation, CCs were washed three times with 3%
Bovine Serum Albumin (BSA) in PBS. Total cell nuclei were stained with 2.5 μg/ml Hoechst
33258 in 3:1 (vol/vol) glycerol/PBS, mounted on microscope slides, covered with cover-up
micro slides, sealed with nail polish and kept at 4˚C in the dark until observation. CCs were
observed under an E-600 Nikon fluorescent microscope equipped with a 365 nm excitation fil-
ter. Apoptosis was determined as the percentage of labeled cells (TUNEL positive) to the total
cell number (Hoechst 33258) [22]. For each condition, a minimum of 800–1000 randomly
chosen CCs was examined.

Oocyte and blastocyst mitochondria and ROS staining. In order to detect and localize
mitochondria, oocytes and blastocyst were washed three times in PBS with 3% BSA and
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incubated in the same medium containing 280 nM MitoTracker Orange CMTM Ros (Molecu-
lar Probes) for 30 min at 38.5˚C, under 5% CO2 [19]. After incubation with MitoTracker, in
order to detect intracellular sources of ROS, oocytes and blastocyst were washed in PBS with
0.3% BSA and incubated for 15 min at 38.5˚C under 5% CO2 in the same medium containing
10 μM 2’,7’- dichlorodihydrofluorescein diacetate (H2DCF-DA). After incubations, oocytes
and blastocysts were washed in PBS and fixed overnight at 4˚C in 2% paraformaldehyde solu-
tion in PBS [19].

Nuclear chromatin evaluation of oocytes and embryos. After fixation, oocytes and
embryos were stained with 2.5 μg/mL Hoechst 33258 in 3:1 (v/v) glycerol/PBS and mounted
on microscope slides with coverslips, sealed with nail polish and kept at 4˚C in the dark until
observation. Slides were examined under an epifluorescence microscope (Nikon Eclipse 600;
×400 magnification) equipped with a B-2A (346 nm excitation/ 460 nm emission) filter.
Oocytes were evaluated in relation to their meiotic stage and classified as germinal vesicle
(GV), metaphase to telophase I (MI to TI), MII with the 1st polar body extruded, or as degen-
erated [19]. Early embryos were evaluated according to their number of nuclei. They were
indicated as morulae if they contained more than 32 cells but did not have an organized outer
layer of cells, and as blastocysts, if they contained more than 64 cells and had initiate the orga-
nization of outer presumptive trophoblast cells [22].

Assessment of mitochondrial distribution pattern and intracellular ROS localization.
Oocytes at the MII stage and blastocysts were observed at x600 magnification in oil immersion
with a Nikon C1/TE2000-U laser scanning confocal microscope. A helium/neon laser ray at
543 nm and the G-2A filter (551 nm excitation and 576 nm emission) were used to point out
the MitoTracker Orange CMTMRos. An argon ion laser ray at 488 nm and the B-2A filter
(495 nm excitation and 519 nm emission) were used to point out the DCF. Scanning was con-
ducted with 25 optical series from the top to the bottom of the oocytes and embryos with a
step size of 0.45 μm to allow three dimensional distribution analysis. The mitochondrial distri-
bution pattern was evaluated on the basis of previous studies [24–26]. Evaluation was per-
formed according to the followed criteria: (a) a homogeneous distribution of small
mitochondria aggregates throughout the cytoplasm was considered as an indication of low
energy cytoplasmic condition; (b) perinuclear (with mitochondria more concentrated in the
oocyte hemisphere where the meiotic spindle is located) and subplasmalemmal (forming large
granules in the cortical region) was considered as characteristic of healthy cytoplasmic condi-
tion (P/S); and (c) an irregular distribution of mitochondria, with large mitochondrial clusters,
were classified as abnormal. Concerning intracellular ROS localization, oocytes and embryos
with intracellular ROS diffused throughout the cytoplasm together with areas/sites of mito-
chondria/ROS overlapping were considered healthy [24–26].

Quantification of MitoTracker Orange and DCF fluorescence intensity. In each indi-
vidual MII oocyte and blastocyst, MitoTracker Orange and DCF fluorescence intensities were
measured at the equatorial plane for the oocytes and on all 25 focal planes for blastocysts, at
the excitation/emission as described above, with the aid of the EZ-C1 Gold Version 3.70 image
analysis software platform for Nikon C1 confocal microscope [19,22]. For each focal plane, a
circle area was drawn in order to measure only the area including cell cytoplasm. Colocaliza-
tion analysis of mitochondria and ROS was performed, as previously reported, with the same
software. Degree of colocalization was reported as the overlap degree between MitoTraker
Orange and DCF fluorescence signals [19,22]. Mitochondria/ROS co-localization is reported
as a biomarker of healthy oocytes and embryos [19,25–27].

Collection of human ovaries. The ovarian tissue was collected from six subjects (mean
age ± SD: 29 ± 6.42) with gender dysphoria, who underwent bilateral hysteroannessiectomy at
the Gynecology and Physiopathology Reproductive Unit of S. Orsola-Malpighi Hospital of
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Bologna, Italy. At the time of ovarian tissue collection, the subjects were treated with testoster-
one not more than one year. Serum levels of Anti-Müllerian hormone (AMH) were normal.
All subjects signed written informed consent to voluntarily donate the ovarian tissue for
research (approval of the Ethics Committee: protocol n˚ 61/2007 / O / Tess). This consent was
independent of being approved to undergo bilateral hysteroannessiectomy. Patients were
divided by age into two groups: 21–25 years (patients N˚1, N˚2 and N˚3) and 3–36 years
(patients N˚4, N˚5 and N˚6).

Ovarian tissue cryopreservation. Ovarian tissues, obtained by laparoscopy, were imme-
diately transferred to the laboratory in Dulbecco’s phosphate-buffered saline (DPBS) supple-
mented with 10% human serum (HS; provided by the Transfusion Center of S.Orsola-
Malpighi Hospital) at 4˚C. The ovarian medulla was removed using a surgical scissor and the
cortical tissue was dissected in strips (length 1 cm × width 2 mm × height 1 mm) and cryopre-
served by slow freezing [28].

Thawing and culturing of irradiated cryopreserved human ovarian tissue. Irradiated
cryopreserved samples and CTRL cryopreserved samples were thawed using a rapid thawing
protocol [29]. After thawing, for each subject and experimental condition (CTRL, 50 mGy and
100 mGy), the cortical strips were cut into 2mm x 2mm x 1mm fragments and cultured at 37˚
C for 24 hours and 6% CO2, in order to allow the tissue reactivation after thawing. The culture
medium was composed of ċ-Minimum-Essential-Medium (ċ-MEM), antibiotics, Insulin-
Transferrin-Selenium (ITS) 1X, N-acetylcysteine (NAC) 25 mM, Insulin growth factor-II
(IGFII) 0.02 μM and 40% human serum.

Total RNA extraction and cDNA synthesis. RNA was extracted from ovarian fragments
using TRIzol reagent (Invitrogen). Briefly, 0.5 mL of TRIzol were add per 25–50 mg of tissue.
Extraction steps were performed according to TRIzol manufacturer’s instructions and the
extracted RNA was quantified by NanoDrop ND-1000 Spectrophotometer (Thermo Fisher
Scientific). The first strand cDNA was synthesized from 500 μg of RNA template by Trans-
Script One-Step gDNA Removal and cDNA Synthesis SuperMix kit (TransGene Biotech) in a
20 μL reaction.

Real-Time PCR (qRT-PCR). Reverse-transcribed cDNA was used for Real Time Poly-
merase Chain Reaction (qPCR) using iTaq Universal SYBR Green Supermix (Biorad). The
mRNA expression of the following set of genes was assessed: cyclin-dependent kinase inhibitor
1 (p21), cell proliferation markers Ki-67 (ki67), phorbol-12-myristate-13-acetate-induced pro-
tein 1 (NOXA), p53-upregulated modulator of apoptosis (PUMA), B-cell lymphoma 2 (Bcl2),
BCL2-associated X protein (Bax). The Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH)
was used as internal reference gene. Specific forward (F) and reverse (R) primers are listed in
Table 1. Primers were used at a concentration of 0.5 μM and the reaction performed on a 7300
Real-Time PCR System (Applied Biosystems). Data from the reaction were collected and ana-
lyzed using the 2-ïïCt method. Relative gene expression analysis was performed by relating the
signal of the treated group to that of CTRL.

Table 1. Primer sequences of analysed genes.

Gene Forward primer Reverse primer

GAPDH �¶�7&**$*7&$$&**$777**7��¶ �¶�*$$777*&&$7***7**$$7��¶
p21 �¶�**&$*$&&$*&$7*$&$*$77��¶ �¶�*&**$77$***&77&&7&77��¶
ki67 �¶�*&&&&$$&&$$$$*$$$*7&7��¶ �¶�$*&777*7*&&77&$&77&&$��¶
NOXA �¶�**&&7*&**77&$$*&7��¶ �¶�*&&*$&*&&$&$77*7*��¶
PUMA �¶�$&*$&&7&$$&*&$&$*7$&*$��¶ �¶�&&7$$77***&7&&$7&7&***��¶
Bax �¶�7&$**$7*&*7&&$&&$$*$$*��¶ �¶�7*7*7&&$&**&**&$$7&$7&��¶

https://doi.org/10.1371/journal.pone.0253536.t001
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Western blot. Samples were lysed in RIPA buffer, containing 50 mM Tris-HCl pH 7.4,
150 mM NaCl, 0.5% NP-40, 5 mM EDTA, 0.5% sodium deoxycholate, 1 mM PMSF, 1mM
sodium o-vanadate and protease and phosphatase inhibitors. Samples were homogenized on
ice by ultrasonic homogenization and protein concentration determined by Bradford assay.
Proteins (about 40 μg) were resolved on SDS-polyacrylamide gel and transferred to a PVDF
transfer membrane (GE Healthcare). Blots were blocked in 5% non-fat dry milk in PBS-T
(0.05% Tween 20 in PBS) for 1h at room temperature and then incubated with primary anti-
bodies (in 1% milk in PBS-T) O.N. at 4˚C: GAPDH (sc-32233 SantaCruz Biotech, 1:2000 dilu-
tion); anti-čH2AX (05–636 Millipore, 1:1000 dilution); Bcl-2 (sc-509 SantaCruz Biotech, 1:500
dilution); Bak (sc-832 SantaCruz Biotech, 1:500 dilution). Membranes were, then, incubated
with HRP-conjugated secondary antibody for 1 h at room temperature and signals detected by
peroxidase reaction using Clarity Western ECL Substrate (Biorad). Immunoblots were quanti-
tatively evaluated using ImageJ software (NIH).

Histology. Ovarian tissue samples were fixed in 4% formaldehyde solution at 4˚C for 48
hours. After alcohol dehydration, samples were embedded in paraffin blocks for light micros-
copy and sectioned (5 μm thickness) following standard histological procedures. After deparaf-
fination and hydration, tissues were serial-sectioned and stained with haematoxylin and eosin.
Sections of ovarian tissue were observed under a ×10 magnification microscope to detect arte-
facts and then observed at ×25 to assess developmental follicle stage, follicle preservation and
stroma integrity. Serial follicle count was performed over the entire biopsy, every five sections,
and, to avoid double counting, for any type of follicle, only oocytes with a visible nucleus were
considered. Classification of follicles was performed according to Gougeon classification [30];
briefly, follicles were staged as: (a) primordial, when the oocyte was surrounded by a partial or
a complete layer of flattened granulosa cells (GCs); (b) primary, when the oocyte was sur-
rounded by a single layer of cuboidal GCs, and (c) secondary, when the oocyte was surrounded
by more than one layer of cuboidal GCs. The total number of primordial, primary and second-
ary follicles per biopsy was counted in a blind fashion by two different operators with a Leitz
Diaplan light microscope equipped with CCD JVC video camera (Leitz Diaplan, Wetzlar,
Germany) and Image ProPlus software (MediaCybernetics, Rockville, USA). Data were
reported as follicular density (referred to follicle number/mm3) and relative follicular density
% (referred to the percentage of Treated follicle number/CTRL follicle number), necessarily to
normalize acquired data for the sample volume. Briefly, (a) follicular density was calculated by
dividing the total number of follicles counted by the volume of the tissue analysed, and (b) tis-
sue volume was calculated as the total area of all sections analysed multiplied by five, the inter-
val of analysis, and then for the thickness of sections (0.5 μm), obtaining the volume of the
biopsy expressed as mm3. Relative follicular density % was calculated as the percentage of the
Treated follicular density/CTRL follicular density.

Statistical analysis. The proportions of oocytes showing the different chromatin configu-
rations and mitochondrial distribution patterns were compared among groups by Chi-square
test with the Yates’ correction. The percentages of apoptotic cumulus cells and the proportion
of cleaved embryos and blastocysts were compared by Chi-square test without the Yates’ cor-
rection. Mitochondria and ROS raw values of fluorescence intensities and overlap coefficient
and blastocyst number of nuclei were compared by one-way ANOVA followed by Dunnett’s
post hoc test. Data from human ovarian tissues, were analysed with GraphPad Prism (software
version 7.0, San Diego, CA). Results were represented as mean ± SEM and P value was deter-
mined by one-way ANOVA and Bonferroni post-analyses. Differences with P<0.05 were con-
sidered to be statistically significant.

Experimental design. Experiment 1 Effects of low-dose X-rays on COCs viability, matura-
tion and bioenergetics. The first step of the present study was to identify the range of low-dose
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X-ray radiations affecting COC viability and functionality. Experiments were performed in the
juvenile sheep as large animal model. Because of the need to foresee round-trip transfers to the
irradiation treatment site and to allow correct subsequent IVM scheduling, COCs underwent
holding treatment [20], which allows to efficiently keep overnight oocytes without adversely
affecting their meiotic and developmental competence. After placement in HM and transport
to the irradiation unit, COCs were exposed to 0, 10, 50 or 100 mGy X-rays. The higher dose of
2500 mGy was used as positive control of damage, as corresponding to a very high exposure
dose (equivalent to approximately 250 CT). After exposure, COCs continued to be held over-
night in HM and day after underwent IVM. After IVM, CCs underwent TUNEL assay,
whereas oocytes were analyzed for nuclear maturation rate and cytoplasmic bioenergetic/oxi-
dative status.

Experiment 2 Effects of low-dose X-rays on embryo developmental and quality. A subsequent
step of the study was performed to determine the effects of low-dose X-ray radiations on
oocyte developmental competence. In this experiment, COC retrieval, holding, transport, X-
ray irradiation and IVM were performed as described in experiment 1. After IVM, ovine
COCs underwent IVF and in vitro embryo culture up to the blastocyst stage. Effects of X-ray
radiations on blastocyst quality were assessed as long-term carryover effects.

Experiment 3 Effects of low-dose X-rays on human ovaries tissue morphology and functional-
ity. The final step of the study was to determine the effects of low-dose X-ray radiations on
human ovarian tissue morphology and gene expression. Ovarian tissue samples were trans-
ported under liquid nitrogen to the irradiation unit. For each subject, two cryopreserved ovar-
ian tissue samples were irradiated at 50 mGy and 100 mGy. Non-irradiated cryopreserved
ovarian tissue from each subject was used as a control (CTRL). After irradiation, tissue samples
were thawed, in vitro cultured for 24 hours and then processed for the following analyses: his-
tology (to evaluate the morphological features of follicles and stroma), qPCR (to evaluate the
expression of transcripts involved in apoptosis [NOXA, PUMA, Bax] and cell cycle arrest [p21,
ki67]); and western blot (to evaluate the expression of proteins involved in apoptotic pathways
[Bcl2, Bak, čH2AX]).

Results

Experiment 1: Low-dose X-ray radiations affect oocyte mitochondrial
function

No significant effects of low-dose X-ray radiations were observed on cumulus cells apoptotic
index and oocyte maturation rate (P>0.05; Table 2). No effects were noticed on the

Table 2. Effects of cumulus-oocyte complex exposure to low-dose X-ray radiations before IVM on cumulus cell apoptosis, oocyte chromatin configuration and
mitochondria pattern.

X-ray dose
(mGy)

N˚ (%) of
apoptotic/examined cells

N˚ of
analysed oocytes

Nuclear chromatin configuration N˚ (%) N˚ (%) of MII oocytes with
healthy mitochondria pattern

GV MI to TI MII+PB Abn

0 95/1011 (9.39) a 55 8 (14.5) 7 (12.7) 35 (63.6) 5 (9.1) 21/34 (61.8)

10 48/616 (7.79) 48 6 (12.5) 6 (12.5) 32 (66.7) 4 (8.3) 14/30 (46.7)

50 79/881 (8.96) 56 9 (16.1) 6 (10.7) 40 (71.4) 1 (1.8) 17/36 (47.2)

100 101/950 (10.63) 61 8 (13.1) 10 (16.4) 37 (60.6) 6 (9.8) 18/36 (50)

2500 238/605 (39.33) b 68 8 (11.8) 13 (19.1) 44 (64.7) 3 (4.4) 25/38 (66)

Chi-square test: a,b P<0.001. For each experimental condition, three replicates were performed with 20–25 COCs/replicate.

https://doi.org/10.1371/journal.pone.0253536.t002
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percentages of oocytes which did not resume meiosis (GV stage) or those found at intermedi-
ate meiotic stages (MI to TI) or showing abnormal chromatin configurations. In order to
explore the hypothesis whether X-rays may induce damaging effects on oocyte cytoplasmic
quality, those oocytes found at the metaphase II stage were analysed for their bioenergetic/oxi-
dative status. Mitochondrial distribution pattern did not vary after exposing COCs at low
doses as the majority of oocytes showed healthy, perinuclear and subcortical, cytoplasmic dis-
tribution of mitochondria (Table 2). Remarkably, samples exposed to the positive control
doses were significantly affected only for cumulus cells apoptosis but their meiotic potential
and mitochondrial pattern were not affected. On the other hand, exposure to low-dose X-rays
significantly reduced mitochondrial activity (P<0.05 and P<0.01, for 50 and 100 mGy respec-
tively; Fig 1, panel A) and ROS levels (P<0.05, for 50 and 100 mGy; Fig 1, panel B) whereas
mitochondria/ROS co-localization was not affected (Fig 1, Panel C). Exposure to 2500 mGy
significantly reduced two quantitative bioenergetic parameters, such as mitochondrial activity
(P<0.01) and mt/ROS colocalization (P<0.001) whereas ROS levels was not changed (Fig 1).
Notably, exposure to the lowest dose of 10 mGy, did not result in any significant difference in
all oocyte evaluated parameters. Representative micrographs of COCs exposed to low-dose X-
ray radiations and examined for oocyte maturation and bioenergetic parameters, and cumulus
cells apoptosis are shown in Figs 2 and 3, respectively. In exposed samples, progressive reduc-
tion of fluorescence intensity is evident for both mitochondria- and ROS-specific probes. In
positive controls, a higher density of apoptotic cells is evident, as well as reduced mitochon-
drial activity.

Experiment 2 low-dose X-ray radiations do not apparently affect embryo
development but impair blastocyst bioenergetics

No significant differences in the cleavage rate were found between low-dose exposed and con-
trol groups (P>0.05; Table 3). Similarly, no significant reductions of cleavage, morulae and
blastocyst formation rate were found in the group of oocytes exposed to 2500 mGy (P>0.05;
Table 3). In order to assess any effect of X-ray radiations on embryo quality, the percentage of
hatched blastocyst was recorded. No significant differences were found at morulae and blasto-
cyst stage after oocyte exposure to low-dose X-ray radiations (Table 3). In addition, no signifi-
cant differences were observed in the number of nuclei of blastocyst between exposed and
control group (Table 3). Independently of the experimental group and the developmental
stage, all blastocysts showed a well-defined inner cell mass (ICM) under phase contrast micros-
copy. On the other hand, exposure to low-dose X-rays significantly reduced mitochondrial
activity (P<0.0001 for 10, 50 and 100 mGy; Fig 4, panel A), ROS levels (P<0.0001 for 10, 50
and 100 mGy; Fig 4, panel B) and mt/ROS colocalization (P<0.01 for 50 mGy and P<0.0001
for 10 and 100 mGy; Fig 4, Panel C). As well, exposure to 2500 mGy significantly reduced
mitochondrial activity (P<0.0001), intracellular ROS levels (P<0.0001) and mt/ROS colocali-
zation (P<0.0001).

Experiment 3 low-dose X-ray radiations reduces follicular density and up-
regulate apoptotic gene expression in ovarian tissues of women belonging
to the 33–36 years group

With the aim to test the effect of X-rays low-doses on human ovarian cortex, rich in primordial
and primary follicles, from six patients were treated as described in M&M. Since it has been
estimated that in vivo primordial follicles transition to primary follicles requires about 150
days while in vitro was suggested that activation can be seen after 6 days, the experiments
reported here focus mainly on the possible damage induced by the thawing and irradiation
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[31–33]. Histological analysis showed no alterations in the morphological characteristics of the
ovarian components, including stroma and follicular structure, between the control and the
irradiated groups (Fig 5). The primordial and primary follicles density of ovarian cortex in the
control and irradiated groups were reported in Table 4. In the untreated group, the density
varied from 6.54 to 1011.20 primordial follicles/mm3 and from 3.77 and 467.20 primary folli-
cles/mm3 between the six patients analysed. Assessment of relative follicular density percent
was performed to analyse statistical differences between the control and treated groups. Nota-
bly, no differences were observed in primordial and primary follicular density between the

Fig 1. Effects of low-dose X-ray radiations before IVM on bioenergetic/oxidative status of matured oocytes.
Mitochondria (mt) activity (panel A) and intracellular ROS levels (panel B) are expressed in arbitrary densitometric
units (ADU) as means ± SD of MitoTracker Orange CMTMRos and DCF fluorescence intensity. Mitochondria/ROS
colocalization (panel C) is expressed as means ± SD of overlap coefficient. One-way ANOVA followed by Dunnett’s
post hoc test: a,b = P<0.05, a,c = P<0.01, a,d = P<0.001.

https://doi.org/10.1371/journal.pone.0253536.g001
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control and irradiated groups (Fig 6, panel A) and no remnants of degenerating follicles were
observed. However, upon subject classification into age groups as 21–25 years (N. 3:
mean ± SD: 23.3 years ± 2.08) and 33–36 years (N. 3: mean ± SD: 34.6 years ± 1.5), significant
reduction in the primordial follicular density, either at 50 mGy and 100 mGy, was found in
subjects belonging to the 33–36 years group in respect to controls (Fig 6, panel B). In order to
evaluate whether X-rays could have any effects on the activation of apoptotic program, the
expression of genes and proteins involved in apoptosis, DNA damage and cell cycle control,

Fig 2. Representative micrographs of oocytes exposed to low-dose X-ray radiations and examined for their
nuclear chromatin and bioenergetic/oxidative potential. Representative images of a control oocyte (column 1) and
oocytes exposed to 10–2500 mGy (column 2–5) before IVM. Corresponding phase contrast images showing cell
morphology (line A), epifluorescence images showing nuclear chromatin configuration (line B) and confocal images
showing mitochondria (line C) and intracellular ROS (line D). Confocal images were taken at oocyte equatorial plane.
Scale bar represents 40 μm.

https://doi.org/10.1371/journal.pone.0253536.g002

Fig 3. Effects of low-dose of X-ray radiations on cumulus cells apoptosis. Representative images of cumulus cells
assessed for apoptotic index by TUNEL assay after COC exposure to X-ray radiations before IVM. Line A: nuclei
stained with Hoechst 333258 (blue). Line B: TUNEL-positive nuclei stained in green. Scale bar represents 20 μm.

https://doi.org/10.1371/journal.pone.0253536.g003
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Table 3. Effects of oocyte exposure to low-dose X-ray radiations before IVM on oocyte in vitro developmental competence and blastocyst quality.

X-ray dose
(mGy)

N˚ evaluated
oocytes

N˚ (%) cleaved
embryos

N˚ (%) Morulae
(/cleaved embryos)

N˚ (%) blastocysts
(/cleaved embryos)

N˚ (%) hatching blastocysts
(/cleaved embryos)

N˚ of blastocyst nuclei
(mean±SD)

0 116 64 (55) 5 (7.8) 8 (12.5) 1 (1.6) 85.38±29.15

10 127 62 (49) 3 (4.8) 6 (9.7) 1 (1.6) 100±61.73

50 140 75 (53) 4 (5.3) 4 (5.3) 0 (0) 78.50±10.28

100 130 66 (51) 4 (6.1) 7 (10.6) 2 (3.0) 141.86±73.40

2500 102 50 (49) 5 (10.0) 5 (10.0) 1 (2.0) 98.00±39.15

Chi-square test: not significant. For each experimental condition, six replicates were performed with 20–25 COCs/replicate.

https://doi.org/10.1371/journal.pone.0253536.t003

Fig 4. Effects of low-dose X-ray radiations before IVM on blastocyst bioenergetics/oxidative status. Graphs
representing mitochondria activity, intracellular ROS levels and mt/ROS colocalization of blastocysts from control
oocytes or oocytes exposed to X-ray radiation before IVM and obtained by IVM, IVF and in vitro embryo culture.
Mitochondria (mt) activity (panel A) intracellular ROS levels (panel B) and mt/ROS colocalization (panel C) are
expressed as in Fig 1. One-way ANOVA followed by Dunnett’s post hoc test: a,b = P<0.0001, a,c = P<0.01.

https://doi.org/10.1371/journal.pone.0253536.g004
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were analysed. In detail, no significant differences (P>0.05) were found in the mRNA expres-
sion of pro-apoptotic genes, such as NOXA, PUMA, Bax (Fig 7, panels A, C and E), and cell
cycle-related genes, such as p21, ki67 (Fig 8, panels A and C) in the comparison between sam-
ples exposed to low-doses of X-rays radiations and the controls. However, the classification of

Fig 5. Histological analysis of human ovarian cortex after treatment with/out low-dose of X-ray radiations.
Representative hematoxylin-eosin-stained sections from control (A) and 100 mGy treated ovarian cortex (B). A’-A”
and B’-B” are higher magnification images from A and B respectively.

https://doi.org/10.1371/journal.pone.0253536.g005

Table 4. Follicular density (N˚ of follicles/mm3) in human ovarian cortex after treatment with/out low-dose of X-ray radiations.

Patient n˚ Primordial follicles density Primary follicles density Total follicles density

CTRL 50mGy 100mGy CTRL 50mGy 100mGy CTRL 50mGy 100mGy

21–25 years 1 119 115 117 86 104 107 204 220 224

2 1011 1130 920 467 490 420 1478 1621 1340

3 233 217 211 276 240 275 509 457 486

33–36 years 4 159 99 117 184 126 132 343 224 249

5 111 64 54 49 50 39 159 115 92

6 6 3 5 4 6 5 10 10 9

Data from 6 patients are reported. CTRL: Human ovarian tissue not exposed to x-radiation.

https://doi.org/10.1371/journal.pone.0253536.t004
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subjects into the two age groups showed an increase in NOXA (about 1.79 fold) and Bax
(about 1.83 fold) expression in 33–36 years group after irradiation to 50 mGy when compared
to controls (Fig 7, panels B and F). The expression of the Bcl2 anti-apoptotic protein (Fig 9,
panels A, C and D), of the Bak pro-apoptotic protein (Fig 9, panels C, E and F) and of the
čH2AX (Fig 9, panels B, G and H), a marker of DNA damage, was subsequently evaluated by
western blot analysis. No differences were observed in the expression of the aforementioned
proteins between the different experimental conditions, either by analysing data from all
patients or by dividing them into age groups.

Discussion

The health benefits of diagnostic X-ray and nuclear medicine diagnostics in humans, may be
accompanied by a risk of deleterious effects. Due to the limited availability and ethical issues
on the use of human female gametes for research purposes, the only possibility to investigate
the effects of X-rays was to use the oocytes and embryos from animal models [34–36]. The
present study was performed in sheep, a large animal model with translational relevance in
human reproductive medicine. Sheep displays closer reproductive physiological features to
humans compared to other species, including mechanisms which control follicular dynamics,
oocyte maturation and embryo development, as well as oocyte morphology and bioenergetics
[37–46].

No significant effects were observed on CC viability after exposure to low-dose X-rays,
whereas exposure to 2500 mGy (used as potential positive control of oocyte damage) signifi-
cantly increased the apoptotic index. McGee & Hsueh, [13] showed that granulosa cell apopto-
sis is a primary sign of radiation-induced follicular atresia. Also, irradiation-induced
production of DNA double-strand breaks has been shown to play a central role in triggering
the mitochondrial apoptotic pathway [47]. In female mice irradiated with 1000 mGy, oocyte
and granulosa cell apoptosis were previously described [48]. In HeLa cells, ionizing radiations
at 500 mGy did not induce apoptosis [49] whereas at 2–10 Gy they did it [50]. Mesenchymal
stem cells (MSCs) showed senescence and apoptosis following X-ray low dose exposure (40
and 160 mGy). The interpretation of our results could be based on the study by Osipov and
coworkers [51] who demonstrated that 60–80 mGy of X-rays activate DNA repair mechanisms
in MSCs. The results from studies cited above suggest that large differences of radiosensitivity
to low levels of radiations (< 100 mGy) may exist between different cell types [52].

Oocyte nuclear maturation rates was not affect by X-rays low doses, and surprisingly, not
even at 2500 mGy, indicating that LD50 in sheep oocytes could be higher than that in human

Fig 6. Relative follicular density (treated/control) in human ovarian tissues exposed to X-radiation (50 mGy and 100 mGy). (A) Graph reports
combined data from ovarian cortex derived from all 6 patients. (B) Data organised on patients’ age. Data are represented as mean ± SEM. ANOVA
of 50 mGy and 100 mGy groups vs control: ⇤ P< 0.05. CTRL: human ovarian tissue not exposed to X-ray radiations.

https://doi.org/10.1371/journal.pone.0253536.g006
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(< 2000 mGy; [15]). Previous studies reported over-expression of genes activated in response to
X-ray-induced DNA damage, suggesting protective mechanisms ensuring genomic integrity of
the female germ line [53–55]. Possibly, immature (GV stage) oocytes used in our study were
less sensitive than matured oocytes as observed in mouse study [56] which showed that gamma
ionizing radiations (7000 mGy) induced abnormal morphology of the polar body and shrinkage
of the oocyte, and that antral follicles are more susceptible compared to primordial ones.

Fig 7. Apoptosis evaluation in human ovarian tissue exposed to X-radiation (50 mGy and 100 mGy). Real-Time PCR analysis for
NOXA (A, B), PUMA (C, D) and Bax (E, F) mRNA expression. (A, C, E) Graphs report combined data from ovarian cortex derived
from all 6 patients. (B, D, F) Data organised on patients’ age. CTRL: human ovarian tissue not exposed to x-radiation. Data are shown
as mean ± SEM. ANOVA of 50 mGy and 100 mGy groups vs control: ⇤⇤ P< 0.01. CTRL: human ovarian tissue not exposed to X-ray
radiations.

https://doi.org/10.1371/journal.pone.0253536.g007
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The redistribution of mitochondria from a homogenous to a heterogeneous pattern in the
cytoplasm is a very important biomarker of oocyte healthy status and cytoplasmic maturity
[41,56–60]. In ovine studies, the presence of granular or clustered mitochondrial distribution in
MII adult oocytes, which showed the highest ATP levels and developmental competence, sug-
gests that mitochondria clusterization is related to an increased mitochondria activity and a
higher intracytoplasmic ATP concentration. On the contrary, the persistence of homogeneously
diffused mitochondria indicates their low activity and ATP concentration [46]. Quantification
analysis of oocyte bioenergetic/oxidative status enable identification of functional damage
induced by low-dose X-rays and in our study all tested X-ray doses did not affect the mitochon-
drial distribution pattern. To the best of our knowledge, no other studies to date report the
effects of low-dose ionizing radiation on oocyte mitochondrial distribution pattern.

Our data could be compared with previous studies on other cell systems where X-ray radia-
tions on HeLa cells exposed to different doses of X-ray radiations (2 to 20 Gy) indicated a loss
of mitochondrial membrane potential compared with controls [50], or with human neural
cells, where a single radiation dose of 5000 mGy induced loss of respiratory function [55]. The
reduction in mitochondrial activity may represent oocyte damage, resulting in a less energy
intake to support oocyte/embryo development [45].

In a general view on the effects of low-dose irradiation on COC biology, it has to be consid-
ered that CCs are a cell population with high metabolic-turnover compared with the oocyte,
which displays low metabolic activity [61]. In our experimental conditions, CC mitochondrial

Fig 8. Cell cycle evaluation in the human ovarian tissue exposed to X-radiation (50 mGy and 100m Gy). Real-Time PCR analysis
for p21 (A, B) and ki67 (C, D) mRNA expression. (A, C) Graphs report combined data from ovarian cortex derived from all 6 patients.
(B, D, F) Data organised by patients’ age. Data are shown as mean ± SEM. ANOVA of 50m Gy and 100 mGy groups vs control: not
significant. CTRL: human ovarian tissue not exposed to X-ray radiations.

https://doi.org/10.1371/journal.pone.0253536.g008
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Fig 9. Apoptosis evaluation in the human ovarian tissue exposed to X-radiation (50 mGy and 100 mGy). (A, B) Representative WB for
Bcl2 (A), Bak and čH2AX (B) in 21–25 years and in 33–36 years groups. (C-H) Densitometric quantification of the relative expression of
Bcl2, Bak and čH2AX normalized against GAPDH reported as (C, E, G) combined data from ovarian cortex derived from all 6 patients or
(D, F, H) organised by patients’ age. Data are expressed as mean ± SEM. ANOVA of 50 mGy and 100 mGy groups vs control: not significant.
CTRL: human ovarian tissue not exposed to X-radiations.

https://doi.org/10.1371/journal.pone.0253536.g009
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membrane potential may have played a supporting role in the ability of the oocyte to resist
stressful conditions. It can be assumed that the whole cumulus oophorus, due to its three-
dimensional structure and huge reciprocal intercellular communications, may have played a
protective role on the oocyte against radiations by limiting the damage at oocyte mitochondria
and consequently at chromatin level. Future investigations could confirm these hypotheses by
testing the effects of X-ray radiations on decumulated oocytes.

Progressing toward evaluation of oocyte developmental competence, no long-term effects
of oocyte exposure to low dose X-rays on embryo development were observed. Few literature
data are currently available on this topic. Our data can be considered in agreement with those
by Matsuda et al., [62] who reported the effects of exposure of matured oocyte to X-ray radia-
tions on pronuclear formation. In this study, no effects in the range of around 250–1000 mGy,
were found. However, it has to keep in mind that different exposure schemes were used in our
(immature oocytes) and in mentioned (mature oocytes) study. Even if no effects were found
on embryo development and on the percentages of in vitro produced blastocysts, it came out
that blastocysts originated from oocytes exposed to low-dose X-rays showed reduced mito-
chondrial activity and ROS generation ability, indicating possible viability loss. Human and
bovine embryos, at the early stages of development, rely on oxidative phosphorylation [63].
Thus, reduced energy status in blastocysts can determine the risk of implantation failure. Fur-
ther studies are necessary to verify whether these effects are reversible and can be prevented or
cured by in vitro detoxifying approaches.

With the aim to expand knowledge on molecular mechanisms underlying ovarian follicle
damage after low-dose X-ray exposure, the expression of genes and proteins involved in the
DNA damage, as well as apoptosis process and cell cycle control, the histological analysis were
performed on cryopreserved human ovarian tissues. Based on limited availability of human
ovarian tissue for research purposes, ovaries of women with gender dysphoria were used for
the study. To date, the effects of androgen therapy on the ovary are not fully known. Although
some literature data reports that androgen exposure in transmen did not produce damage to
oocytes in the tissue [64], other studies described ovarian effects of testosterone exposure in
gender dysphoria subjects [65]. For these reasons, the distribution and morphological features
of follicles in the CTRL ovarian cortex (AMH values) were compared with those observed in
patients with same age which underwent ovarian tissue cryopreservation at our Centre and no
differences were found between groups.

In human ovaries, no significant changes in the exposed groups were observed respect to
the controls. However, subjects stratification into age groups demonstrated significant reduc-
tion in primordial follicles density in the subjects belonging to the 33–36 years group in line
with mRNA and protein expression analysis of the pro- and anti-apoptotic-related factors.
Accordingly, it is well-documented the key role of NOXA and Bax in the č-irradiation-induced
apoptosis of primordial follicles oocytes [66–67] and in follicular atresia [68–70]. Studies in
different cell types support facts that about one-third of the detrimental effects of ionizing radi-
ation at the cellular level are due to direct DNA damage and two-thirds due to generation of
reactive oxygen species (ROS) from ionization of water [71,72]. However, in our study, no sig-
nificant differences were found in čH2AX expression, a marker of DNA damage, between the
control and the samples exposed to low-doses of X-rays, in both age groups. Although there
could be an induction of DNA breaks leading to apoptosis from freeze/thaw processes [73–
75], that may have masked the detection of apoptosis/DNA breaks after irradiation, it is impor-
tant to underline that DNA damage is a rapid event that can be measured soon after radiation
exposure, and probably this explains why no expression of the damage-related marker was
observed after 24 hours. Our results can be compared with data reported by the study of Pesty
et al., [76], where the effects of whole-body 60Co irradiation (500 to 6000 mGy) on follicle
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growth was investigated in adult and prepubertal female mice. They found that irradiation
even at a low total dose (500 mGy), induced an immediate drastic loss of primordial and pri-
mary follicles in the adult mice ovaries. Furthermore, their data also demonstrated that 60Co
irradiation at 200 mGy of adult mice isolated ovaries affects significantly the enclosed fully
grown oocytes. In fact, the proportion of oocytes recovered from large antral follicles and
exhibiting in vitro spontaneous calcium oscillations, was clearly decreased. Moreover, among
these oocytes, only a small part of them showed regular calcium oscillations compared to con-
trols [76]. In two other studies performed by using high irradiation doses, it was suggested that
the dose necessary to destroy 50% of primordial follicles (LD50) could be around 2000 mGy
[15] or 6–18 Gy [77]. Moreover, Wallace et al., [78], using a mathematical model, predicted
that the effective sterilizing dose (i.e. dose of radiotherapy that induce premature ovarian
insufficiency after treatment in 97.5% of patients) decrease with age increasing in the moment
of treatment: 20.3 Gy at birth, 16.5 Gy for 20-year-old women and 14.3 Gy for 30-year-old
women. However, the evaluation of follicular damage depends on stage of follicular develop-
ment, as several studies show that antral follicles are more sensitive than primary ones [5].

Conclusions

The present study provides reassuring data on the risk that low-dose X-ray radiation could
damage female fertility. The dose of 10 mGy, equivalent to one CT scan, was not effective on
most of examined parameters of sheep CC, oocyte and embryo level. When used at 50 and 100
mGy, X-rays reduced oocyte mitochondrial bioenergetic/oxidative activity even if no effects
on embryo development were noticed. Based on these data, a certain ability of the juvenile ani-
mal model oocytes to recover from low dose X-ray-induced damage can be hypothesized. Blas-
tocyst bioenergetic parameters were reduced at examined doses, which data lead to
hypothesize existence of reduced cell viability. However, further investigations are needed on
potential reversibility of such effects by detoxifying approaches. The results obtained with
human ovaries from young subjects were in the same direction and no effect of low dose X-ray
was observed in primordial follicle survival, in apoptotic gene expression and in DNA damage
response respect to control. Correspondence of results obtained in human ovaries and juvenile
animal model corroborate our conclusions on the absence of risk for fertility after exposition
to 50 mGy and 100 mGy ionizing radiation. However, when these analyses were stratified by
women’s age and complemented with histological analysis, a significant reduction in follicular
density in irradiated ovaries compared to control was observed. When molecular pathways
that might have been activated were investigated, increased expression of some apoptotic
markers were observed only in biopsies from the 33–36 years group. All together, our data
highlight the low risk infertility following exposure to low X-ray doses in young subjects, but
also underline the requirement for greater attention in elderly women.
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