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Abstract The onset of abnormal movements in DYT1 dystonia is between childhood and

adolescence, although it is unclear why clinical manifestations appear during this developmental

period. Plasticity at corticostriatal synapses is critically involved in motor memory. In the Tor1a
+/D

gag DYT1 dystonia mouse model, long-term potentiation (LTP) appeared prematurely in a critical

developmental window in striatal spiny neurons (SPNs), while long-term depression (LTD) was never

recorded. Analysis of dendritic spines showed an increase of both spine width and mature

mushroom spines in Tor1a
+/Dgag neurons, paralleled by an enhanced AMPA receptor (AMPAR)

accumulation. BDNF regulates AMPAR expression during development. Accordingly, both

proBDNF and BDNF levels were significantly higher in Tor1a
+/Dgag mice. Consistently, antagonism

of BDNF rescued synaptic plasticity deficits and AMPA currents. Our findings demonstrate that

early loss of functional and structural synaptic homeostasis represents a unique endophenotypic

trait during striatal maturation, promoting the appearance of clinical manifestations in mutation

carriers.

DOI: https://doi.org/10.7554/eLife.33331.001

Introduction
Early-onset generalized torsion dystonia (DYT1) is an autosomal dominant movement disorder, com-

monly caused by a GAG base-pair deletion in the TOR1A gene coding for torsinA protein, without

gross brain structural defects or other detectable neuropathology (Ozelius et al., 1997;

Ledoux et al., 2013). Intriguingly, only 30–40% of DYT1 mutation carriers develop dystonia, typically

in childhood-early adolescence (Bressman et al., 2000). However, what triggers the clinical onset of

symptoms is currently unknown, although the presence of a critical developmental period of suscep-

tibility is highly probable, since mutation carriers that do not develop symptoms in that time-window

remain unaffected for their entire life (Pappas et al., 2014).

Plasticity changes include functional and structural synaptic specialization, leading to experience-

dependent acquisition of motor skills. However, genetic or acquired alterations may lead to mal-

adaptive plasticity changes. Accordingly, human studies indicate neural processing and synaptic

plasticity alterations as major determinants in dystonia pathophysiology (Quartarone and Hallett,

2013). A significantly enhanced responsiveness to plasticity protocols has been reported in dystonic

patients (Edwards et al., 2006; Weise et al., 2006; Quartarone et al., 2009). Moreover, patterns

of impaired motor learning have been described even in clinically unaffected DYT1 mutation carriers

(Ghilardi et al., 2003), further supporting the notion that aberrant plasticity represents a unique

endophenotype in dystonia.
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Of note, an impairment of striatal plasticity has been demonstrated in a number of different

DYT1 models, including transgenic mice and rats overexpressing mutant torsinA (Martella et al.,

2009; Grundmann et al., 2012), knock-in mice heterozygous for Dgag-torsinA (Dang et al., 2012;

Martella et al., 2014; Rittiner et al., 2016), revealing an impressive similarity with studies of synap-

tic plasticity in human dystonia. Collectively, these observations support the hypothesis that DYT1

dystonia is a complex neurodevelopmental disorder of abnormal neurochemistry, wiring, and physi-

ology (Goodchild et al., 2013; Pappas et al., 2014).

However, these alterations were observed in adult rodents, and to date, a relationship between

age and corticostriatal plasticity in dystonia is still lacking. Furthermore, the question as to whether

functional and structural plasticity abnormalities occur early in life or later as adaptive changes

remains unknown. We report structural and functional abnormalities occurring in a defined postnatal

time-window in Tor1a+/Dgag mice, indicative of a ‘premature’ and abnormal functional and structural

plasticity, which is paralleled by a time-dependent increase in both BDNF levels and AMPAR-medi-

ated currents.

Our findings reveal molecular, functional and structural changes in DYT1 striatal spiny projection

neurons (SPNs), emphasizing the link between abnormal plasticity and dystonia. Understanding the

key stages at which synaptic circuits are affected could suggest new routes to prevent or treat the

disorder.

Results
The critical period for symptom onset in DYT1 dystonia matches a time-window of postnatal life

when motor memories are shaped by activity-dependent changes in the striatum. Thus, in order to

characterize plasticity changes in the early adolescence, Tor1a+/Dgag mice were recorded from post-

natal day P15 to P35, in good agreement with the approximate life phase equivalencies between

humans and mice, predicting that ~4 weeks of mouse age correspond to ~14 years in humans

(Flurkey et al., 2007).

Electrophysiological characterization of SPNs
Properties of adult Tor1a+/Dgag SPNs have been extensively characterized (Maltese et al., 2014;

Martella et al., 2014). Here, we focused on intrinsic and synaptic properties of juvenile Tor1a+/Dgag

neurons. SPNs recorded at P26 from both Tor1a+/+ and Tor1a+/Dgag mice did not display firing activ-

ity at rest and exhibited no significant differences in their intrinsic membrane properties (data not

shown). Depolarizing and hyperpolarizing current steps caused tonic action potential discharge and

strong inward membrane rectification (Figure 1A). Short ISI (25–50 ms) of paired synaptic stimulation

induced PPF in both genotypes (Figure 1B; p<0.05). At longer ISI (100–1000 ms), PPF was not

observed in juvenile Tor1a+/+ and Tor1a+/Dgag mice (Figure 1B; p>0.05). To explore potential differ-

ences in neurotransmitter release, we recorded spontaneous glutamate- and GABA-mediated cur-

rents in P26 SPNs from both Tor1a+/+ and Tor1a+/Dgag mice. Glutamatergic sEPSCs did not differ

between genotypes (Figure 1C; p>0.05). However, we found a significant increase in the amplitude,

but not in the frequency, of mEPSCs recorded from Tor1a+/Dgag mice compared to wild types

(Figure 1D; p<0.05). Conversely, GABAergic sIPSCs were unchanged in Tor1a+/Dgag with respect to

Tor1a+/+ littermates (Figure 1E; p>0.05). Also, mIPSCs were similar in both genotypes (Figure 1F;

p>0.05).

Premature expression of corticostriatal synaptic plasticity
We previously demonstrated a marked impairment of bidirectional synaptic plasticity in adult (P60-

P75) Tor1a+/Dgag striatum (Martella et al., 2014). However, it remains unclear whether these pat-

terns of abnormal plasticity are core pathologic features in an early developmental period, or occur

later as maladaptive changes. Thus, we performed a detailed characterization of LTD and LTP from

P15 to P35 in Tor1a+/+ and Tor1a+/Dgag mice. In Tor1a+/+ SPNs, HFS failed to induce LTD from P15

to P27 (Figure 2A; p>0.05). Conversely, the HFS protocol elicited a robust LTD from P28 to P35

(Figure 2A; 59.63 ± 2.63% of control; p<0.05). Surprisingly, in slices from Tor1a+/Dgag mice, HFS

stimulation failed to cause a synaptic depression, independently from the postnatal day of recording

(Figure 2B; p>0.05).
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Figure 1. Electrophysiological and synaptic properties of striatal SPNs. (A) Superimposed traces showing voltage responses to both depolarizing (+600

pA) and hyperpolarizing (�200 pA) current steps in SPNs recorded from P26 Tor1a+/+ (black) and Tor1a+/Dgag (red) mice. The insets display single action

potentials (amplitude: Tor1a+/+69.62 ± 1.14 mV, N = 11, n = 11; Tor1a+/Dgag66.65 ± 1.68 mV, N = 8, n = 11; Student’s t test p>0.05). (B) Summary plot of

paired-pulse ratio values showing similar facilitation in both genotypes. Each data point represents mean ± SEM. P26 Tor1a+/+ mice N = 3, 25 ms:

1.24 ± 0.20, n = 5; 50 ms: 1.20 ± 0.12, n = 5, Student’s t test p<0.05; P26 Tor1a+/Dgag mice N = 3, 25 ms: 1.22 ± 0.05, n = 5; 50 ms: 1.19 ± 0.08, n = 5;

Student’s t test p<0.05. Insets represent sample traces showing facilitation at ISI = 50 ms in both genotypes. (C) Representative sEPSCs recordings in

PTX from SPNs of P26 Tor1a+/+ and Tor1a+/Dgag mice. HP: �70 mV. The summary plots show no significant difference between genotypes in sEPSCs

frequency and amplitude (Student’s t test p>0.05). (D) Representative whole-cell recordings in PTX plus TTX of mEPSC from P26 Tor1a+/+ and Tor1a+/D

gag SPNs. HP: �70 mV. Plots show a significant difference in the amplitude of mEPSCs recorded from Tor1a+/Dgag mice compared to wild-types (Tor1a+/

+, 7.45 ± 1.09, N = 9, n = 9; Tor1a+/Dgag, 10.11 ± 0.97, N = 8, n = 9; Student’s t test *p<0.05). (E) Representative recordings in MK-801 and CNQX of

sIPSCs from P26 Tor1a+/+ and Tor1a+/Dgag SPNs. HP:+10 mV. The summary plots show no significant difference in sIPSC frequency and amplitude

(Student’s t test p>0.05). (F) Representative traces of mIPSCs recorded in MK-801, CNQX and TTX. HP:+10 mV. The summary plots show no difference

in frequency and amplitude between genotypes (Student’s t test p>0.05). Data are presented as mean ± SEM.

DOI: https://doi.org/10.7554/eLife.33331.002

The following source data is available for figure 1:

Source data 1. Electrophysiological and synaptic properties of striatal SPNs.

DOI: https://doi.org/10.7554/eLife.33331.003
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Figure 2. Altered developmental profile of corticostriatal long-term synaptic plasticity expression in Tor1a+/Dgag mice. (A) (Top) Developmental time-

course of LTD expression in Tor1a+/+ mice. HFS protocol (arrow) induces LTD in SPNs recorded from Tor1a+/+ mice after P28 (59.63 ± 2.63% of control;

N = 8, n = 8; paired Student’s t test p<0.05), but not from P15 to P27 (99.46 ± 4.65, N = 9, n = 10; paired Student’s t test p>0.05). (Bottom)

Representative EPSP traces recorded before (pre) and 20 min after (post) HFS protocol delivery. (B) (Top) In Tor1a+/Dgag mice, HFS protocol fails to

Figure 2 continued on next page
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The LTP induction protocol failed to elicit a potentiation in Tor1a+/+ mice from P15 to P23

(Partridge et al., 2000) (Figure 2C; p>0.05), whereas a stable LTP occurred from P24 to P35

(Figure 2C; 148.80 ± 15.39% of control; p<0.05). Unexpectedly, in Tor1a+/Dgag SPNs LTP could be

evoked as early as P15, revealing a premature onset, and showed a tendency to increase, compared

to wild types (Figure 2D; Tor1a+/Dgag P15-23, 174.68 ± 22.59% of control; P24-35, 172.35 ± 11.06%

of control; p<0.05).

The pattern of torsinA expression is common to all striatal DARPP-32-labeled neurons

(Martella et al., 2009). To unmask potential differences between direct- and indirect-pathway SPNs,

recording electrodes were filled with biocytin. Enkephalin staining revealed that neither ENK-positive

nor ENK-negative SPNs exhibited LTD, ruling out a possible segregation to a specific population of

SPNs (Figure 2E).

Collectively, these data demonstrate that LTD appeared at P28 in wild-type mice, whereas it

could not be elicited during the entire postnatal period of observation in Tor1a+/Dgag mice

(Figure 2E). Moreover, while in Tor1a+/+ mice LTP could not be evoked before P24, in SPNs from

Tor1a+/Dgag LTP appeared prematurely at P15 (Figure 2F).

Increased AMPA receptor function and abundance at corticostriatal
synapses during development
Changes in synaptic strength during learning and memory processes implicate an accurate regula-

tion of AMPARs and NMDARs expression at postsynaptic membranes (Bassani et al., 2013;

Czöndör and Thoumine, 2013). Thus, we performed an electrophysiological and biochemical char-

acterization of AMPARs and NMDARs of SPNs in both Tor1a+/+ and Tor1a+/Dgag mice.

To investigate the relative abundance of postsynaptic AMPARs and NMDARs, NMDAR/AMPAR

current ratios at corticostriatal synapses were evaluated in both juvenile (P26) and adult (P60)

Tor1a+/+ and Tor1a+/Dgag SPNs (Figure 3A–B). We found that, at P26, the NMDAR/AMPAR ratio

was significantly reduced in Tor1a+/Dgag SPNs compared to wild types (Figure 3A; p<0.05). Con-

versely, no significant differences were recorded in P60 SPNs of both genotypes (Figure 3B;

p>0.05). A reduced NMDAR/AMPAR ratio could reflect an increase in AMPAR function or number, a

decrease in NMDARs function, or even a combination of both. To detect possible differences in the

composition of postsynaptic glutamate receptors in P26 SPNs, a IV relationship of AMPAR-EPSC

was recorded (Figure 3C). Tor1a+/Dgag SPNs showed a significantly increased current at hyperpolar-

ized voltage ranges (Figure 3C; 2-way ANOVA, p<0.01;HP= �70 mV). The GluA2 subunit reduces

AMPAR permeability to Ca2+. Therefore, depending on the subunit composition, AMPAR-EPSC may

show a linear or an inward-rectifying IV relationship (Cull-Candy et al., 2006). Thus, we measured

the rectification index (RI), calculated as the ratio between the AMPAR-EPSC at �70 mV and at +40

mV (Isaac et al., 2007). We observed no significant difference in RI between genotypes (Figure 3C;

p>0.05), suggesting that the enhanced AMPAR current involves an increased surface expression of

AMPARs, rather than an altered receptor composition. Moreover, the AMPAR-EPSC IV relationship

was also recorded in the presence of the selective antagonist of GluA2-lacking AMPARs, NASPM

Figure 2 continued

induce any LTD, irrespective of the postnatal age (P15-27, 96.85 ± 11.35% of control; N = 8, n = 12; P28-35, 100.29 ± 4.16% of control, N = 8, n = 12;

paired Student’s t test p>0.05). (Bottom) Representative traces of EPSPs recorded pre- and post-HFS. (C) (Top) Time-course of corticostriatal LTP

expression during postnatal development in Tor1a+/+ mice. HFS of corticostriatal afferents (arrow) induces LTP expression in Tor1a+/+ mice after P24

(148.80 ± 15.39% of control; N = 6, n = 10; paired Student’s t test p<0.05), but not at P15-23 (104.68 ± 8.99% of control; N = 6, n = 10; paired Student’s t

test p>0.05). (Bottom) Sample EPSPs recorded pre- and post-HFS protocol in Tor1a+/+ mice. (D) (Top) SPNs recorded from Tor1a+/Dgag mice exhibit a

premature LTP (P15-23, 174.68 ± 22.59% of control; N = 6, n = 10; P24-35, 172.35 ± 11.06% of control; N = 9, n = 10; paired Student’s t test p<0.05).

(Bottom) EPSP traces recorded pre- and post-LTP induction. (E) Mean plot comparing LTD expression at different postnatal days in Tor1a+/+ and

Tor1a+/Dgag SPNs. (Inset) Confocal imaging of two SPNs recorded from Tor1a+/Dgag slices filled with biocytin (green) and immunolabelled for ENK (red)

and DARPP-32 (cyano), marker of SPNs. Both ENK-positive and ENK-negative biocytin-labeled SPNs showed lack of LTD (scale bar: 10 mm). (F) Mean

plot comparing LTP expression at different postnatal days in Tor1a+/+ and Tor1a+/Dgag SPNs. Values are presented as mean ± SEM.

DOI: https://doi.org/10.7554/eLife.33331.004

The following source data is available for figure 2:

Source data 1. Altered developmental profile of corticostriatal long-term synaptic plasticity expression in Tor1a+/Dgag mice.

DOI: https://doi.org/10.7554/eLife.33331.005
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Figure 3. Electrophysiological characterization of AMPAR and NMDAR currents at corticostriatal synapses of SPNs in both Tor1a+/+ and Tor1a+/Dgag

mice. (A) (Left) Representative EPSCs traces recorded at HP=+40 mV from SPNs of juvenile Tor1a+/+ and Tor1a+/Dgag mice. The NMDAR antagonist MK-

801 isolates the AMPAR-mediated EPSC component (black trace), while the NMDAR-EPSC (grey trace) is obtained by digital subtraction of the AMPAR

EPSC from the dual-component EPSC (red). (Right) Summary plot of NMDA/AMPA current ratio calculated in SPNs from P26 Tor1a+/+ and Tor1a+/Dgag

mice. A significant decrease of NMDA/AMPA ratio was detected in P26 Tor1a+/Dgag mice, compared to Tor1a+/+ (Tor1a+/+, 2.92 ± 0.38, N = 3, n = 8;

Tor1a+/Dgag, 1.81 ± 0.25, N = 3, n = 6; Student’s t test, p<0.05). (B) (Left) Representative EPSCs traces recorded at HP =+40 mV from SPNs of adult

Tor1a+/+ and Tor1a+/Dgag mice. (Right) Summary plot of NMDA/AMPA current ratio showing no significant difference between genotypes (Tor1a+/+,

1.75 ± 0.15, N = 3, n = 7; Tor1a+/Dgag, 2.01 ± 0.12, N = 3, n = 7; Student’s t test, p>0.05). (C) AMPAR-mediated currents recorded at different HP in P26

Tor1a+/+ and Tor1a+/Dgag SPNs. The IV relationship shows a significant increase in the current recorded at more hyperpolarized range from P26 Tor1a+/

Dgag SPNs (HP=�70 mV: two-way ANOVA, *p<0.01). (Left) Summary plot of rectification index values of P26 Tor1a+/+ and Tor1a+/Dgag SPNs (Tor1a+/+,

0.50 ± 0.07, n = 7; Tor1a+/Dgag, 0.43 ± 0.04, n = 8; Student’s t test p>0.05). (D) AMPAR-mediated currents recorded in the presence of the GluA2-lacking

AMPAR antagonist NASPM at P26. HP =�70 mV; to-way ANOVA, *p<0.01). (Left) Summary plots of the rectification index measured at P26 (Tor1a+/+,

0.53 ± 0.04, n = 5, N = 6; Tor1a+/Dgag, 0.46 ± 0.03, n = 7; Student’s t test, p>0.05). (E) Normalized IV relationships of NMDAR-mediated currents show no

difference between genotypes at P26 (two-way ANOVA, p>0.05). (F) Representative NMDA-mediated EPSCs recorded at HP =+40 mV from P26 SPNs.

(G) Summary plots display rise and decay time of NMDA-EPSCs recorded at HP =+40 mV in SPNs from P26 Tor1a+/+ and Tor1a+/Dgag mice (rise time:

Tor1a+/+, 7.78 ± 0.42, n = 9; Tor1a+/Dgag, 9.23 ± 1.37, n = 7; Student’s t test p>0.05; decay time: Tor1a+/+, 502.50 ± 20.06, n = 9; Tor1a+/Dgag,

422.10 ± 30.15, n = 7, Student’s t test, *p<0.05). Values are presented as mean ± SEM.

Figure 3 continued on next page
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(100 mM). No significant difference in the RI of P26 SPNs was measured in the presence of NASPM

(Figure 3D; p>0.05); yet, at hyperpolarized voltage ranges AMPAR-mediated current was still

increased in Tor1a+/Dgag SPNs (Figure 3D; two-way ANOVA, p<0.01 at HP =�70 mV). These results

further excluded possible alterations of AMPAR surface composition.

The normalized IV relationship of NMDAR-EPSCs showed the characteristic ‘J-shape’

(Mayer et al., 1984) in SPNs recorded at P26 from both genotypes (Figure 3E). No significant dif-

ference was found in the voltage-dependence of NMDARs (p>0.05). By analyzing the kinetics of the

response at HP =+ 40 mV, we detected a significantly decreased decay time in Tor1a+/Dgag mice

compared to controls (Figure 3F,G; p<0.05), despite a comparable rise time, suggesting a modifica-

tion of NMDAR subunit composition (Paoletti et al., 2013). In particular, it is well-established that

the decay time of NMDAR currents is correlated to the amount of GluN2-type subunits. GluN2A and

GluN2B represent the most abundant NMDAR regulatory subunits expressed in SPNs (Chen and

Reiner, 1996; Dunah and Standaert, 2003) and are characterized by a fast and slow decay time,

respectively (Sanz-Clemente et al., 2013).

Taking into account all the above-described electrophysiological results, we evaluated the levels

of AMPAR and NMDAR subunits into TIF fractions purified from striata of both juvenile (P26) and

adult (P60) mice by means of WB analysis. We found a significant increase in the levels of both

GluA1 and GluA2 AMPAR subunits in the postsynaptic compartment of P26 Tor1a+/Dgag mice com-

pared to controls (Figure 4A,B; p<0.05), consistent with the observed reduction of the NMDA/

AMPA ratio and the absence of any alteration of the RI (see Figure 3). Interestingly, we also found

an increase of phosphorylation at GluA1-Ser845 (Figure 4A,B;, p<0.05), which is known to be corre-

lated with LTP expression and to prevent endocytosis of GluA1-containing AMPARs (Oh et al.,

2006; Bassani et al., 2013). Moreover, in agreement with the reduction of the NMDAR decay time,

we observed an increase of GluN2A but not GluN2B subunit at postsynaptic sites of P26 Tor1a+/Dgag

mice compared to Tor1a+/+ (Figure 4C,D; p<0.05). Finally, no modifications of PSD-95, the most

abundant scaffolding protein at the excitatory synapse, was observed (Figure 4C,D). Notably, these

alterations of AMPAR and NMDAR subunits were not present in SPNs from P60 Tor1a+/Dgag mice

(Figure 4; p>0.05).

Next, we performed a detailed evaluation of dendritic spine density and morphology in Tor1a+/D

gag SPNs, compared to age-matched Tor1a+/+ mice. P26 Tor1a+/Dgag SPNs (Figure 5A–D) exhibited

a higher number of mushroom-type spines (Figure 5C; p<0.05) and, consequently, a concomitant

overall increase of dendritic spine width compared to Tor1a+/+ mice (Figure 5B; p<0.05), thus sug-

gesting an advanced stage of spine maturation, in agreement with the observed molecular GluN2A/

GluN2B switch (see Figure 4). This event was associated, as expected, to an overall decrease of den-

dritic spine density (Figure 5A; p<0.05).

Conversely, P60 Tor1a+/Dgag mice (Figure 5E–H) showed a normalization of dendritic spine den-

sity (Figure 5E; p>0.05) and of spine width (Figure 5F; p>0.05) compared to Tor1a+/+ mice. Further-

more, with respect to P26, at P60 the number of mushrooms remained unchanged in Tor1a+/Dgag

mice but increased in Tor1a+/+ (Figure 5G; p<0.05). Yet, at P60 Tor1a+/Dgag mice showed an

increase of thin spines compared to Tor1a+/+ mice (Figure 5G; p<0.05).

Increased BDNF protein expression in Tor1a+/Dgag striatum at P26
Neurotrophic factors play a fundamental role in the development of SPNs and synaptic plasticity

maturation (Altar et al., 1997; Rauskolb et al., 2010). Particularly, BDNF contributes to the devel-

opmental expression of AMPAR subunits at postsynaptic compartments (Jourdi et al., 2003;

Jourdi and Kabbaj, 2013). The majority of BDNF, anterogradely transported to the striatum, origi-

nates from the cortex, where its expression begins in the first postnatal days (Baydyuk and Xu,

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.33331.006

The following source data is available for figure 3:

Source data 1. Electrophysiological characterization of AMPAR and NMDAR currents at corticostriatal synapses of SPNs in both Tor1a+/+ and Tor1a+/D

gag mice.

DOI: https://doi.org/10.7554/eLife.33331.007
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2014). We first performed a WB time-course analysis of BDNF protein level in P15, P26 and adult

(P60-P75) striatum. BDNF expression profile showed a similar age-dependent time-course in both

genotypes (Figure 6A,B; P15 vs P26: Tor1a+/+ p<0.05; Tor1a+/Dgagp<0.01). As indicated by the

BDNF/proBDNF ratio, in line with previous evidence (Zermeño et al., 2009), BDNF was highly

expressed at P15 in both strains. At P26 the signal decreased, and then reached intermediate values

in adults (Figure 6A,B).

Next, we compared striatal proBDNF and BDNF protein levels between genotypes at P26. In line

with previous evidence, proBDNF was detected as a double band at ~32 KDa, whereas mature

BDNF as a single band at 14 KDa (Hartog et al., 2009; Koshimizu et al., 2009; Mandel et al.,

2009; Tropea et al., 2011) (Figure 6C). Both proBDNF and BDNF levels were increased at P26 in

Tor1a+/Dgag striatum (Figure 6C; proBDNF p<0.01, BDNF p<0.05). We therefore examined Bdnf

mRNA expression in Tor1a+/Dgag cortex. Quantitative PCR revealed an increased Bdnf expression in

Tor1a+/Dgag cortex as compared to Tor1a+/+ (Figure 6D; p<0.05). No significant difference between

genotypes was measured in the proBDNF and BDNF striatal protein levels in adult mice (Figure 6E;

p>0.05). Collectively, these data indicate an increase of BDNF level in P26 Tor1a+/Dgag striatum.

Figure 4. Molecular analysis of the SPNs postsynaptic compartment in P26 and P60 Tor1a+/Dgag compared to age-matched wild-type mice. WB

analyses were performed on the post-synaptic TIF fraction in a minimum of three different animals per genotype. (A) WB analysis for GluN2A, GluN2B,

PSD-95 and tubulin in P26 (left panel) and P60 (right panel) Tor1a+/Dgag and age-matched Tor1a+/+ mice. (C) WB analysis for GluA1, GluA1p845, GluA2

and tubulin in P26 (left panel) and P60 (right panel) Tor1a+/Dgag and age-matched Tor1a+/+ mice. (B,D) The histogram shows the quantification of

protein levels following normalization on tubulin (P26 Tor1a+/Dgag compared to Tor1a+/+, GluA1: 142.8 ± 9.8%, n = 5, p<0.05; GluA1-p845: 200.9 ±

36.6%, n = 5, p<0.05; GluA2: 175.1 ± 16.6%, n = 5, p<0.05; GluN2A: 197.3 ± 34.0%, n = 5, p<0.05; P60 Tor1a+/Dgag GluA1: 90.0 ± 23.4%, n = 5, p>0.05;

GluA1-p845: 77.7 ± 14.2%, n = 5, p>0.05; GluA2: 103.2 ± 16.2%, n = 5, p>0.05; GluN2A: 88.8 ± 18.0%, n = 5,p>0.05). All values are mean ± SEM

expressed as % of Tor1a+/+ mice.

DOI: https://doi.org/10.7554/eLife.33331.008
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Figure 5. Analysis of dendritic spines morphology in P26 and P60 Tor1a+/Dgag compared to age-matched Tor1a+/

+mice. (A) Histogram representing dendritic spine density in P26 Tor1a+/Dgag and Tor1a+/+ mice (Tor1a+/+,

10.25 ± 0.75 spines/10 mm, n = 10; Tor1a+/Dgag, 7.89 ± 0.70 spines/10 mm, n = 10; unpaired Student’s t test

*p<0.05). (B,C) Histograms showing the quantification of dendritic spine size (B, spine length and head width) and

dendritic spine type (C, mushroom, stubby, thin) in P26 Tor1a+/Dgag compared to Tor1a+/+ mice (dendritic spine

Figure 5 continued on next page
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BDNF regulates surface AMPA receptor expression and synaptic
plasticity
BDNF has been shown to contribute to LTP induction in normal mice (Jia et al., 2010). To test

whether the increase in BDNF levels was involved in the abnormal regulation of AMPA currents and

in the synaptic plasticity deficits, BDNF signalling was selectively blocked by the tropomyosin-related

kinase B (TrkB) receptor competitive antagonist, ANA-12 (Cazorla et al., 2011). A single in vivo

administration of ANA-12 (0.5 mg/kg, intraperitoneal, 4 hr before the experiment) failed to rescue

synaptic plasticity deficits in young Tor1a+/Dgag mice (data not shown). However, repetitive treatment

with ANA-12 (0.5 mg/kg, intraperitoneal, 12 hr and 4 hr before the experiment; Cazorla et al.,

2011; Stragier et al., 2015), completely rescued corticostriatal LTD expression in P28-35 Tor1a+/D

gag mice (Figure 7A; p<0.05). Additionally, ANA-12 treatment reduced LTP amplitude in P24-35

Tor1a+/Dgag mice (Figure 7B; p>0.05). In vehicle-treated Tor1a+/+ and Tor1a+/Dgag mice, no signifi-

cant change was observed (data not shown).

Likewise, in vivo treatment with ANA-12 totally normalized the IV curve of AMPAR-EPSC in P26

Tor1a+/Dgag mice (Figure 7C; p>0.05). Accordingly, also the RI displayed no significant difference

between genotypes (Figure 7C; p>0.05). These findings suggest that increased BDNF levels are

involved in the abnormal developmental expression of AMPARs on SPN postsynaptic membranes,

leading to synaptic plasticity alterations in juvenile mice.

Finally, to demonstrate that BDNF alterations occur in a defined time-window, we tested the

effect of ANA-12 on corticostriatal LTD expression in adult Tor1a+/Dgag mice. In vivo treatment with

ANA-12 (0.5 mg/kg, intraperitoneal, two administrations at 12 hr and 4 hr before the experiment)

failed to restore corticostriatal LTD in P60 Tor1a+/Dgag mice (Figure 7D; p>0.05) confirming that

BDNF-dependent alterations are limited to a sensitive period.

Cholinergic transmission is not involved in the early phase of synaptic
plasticity alterations
Previous work demonstrated a prominent involvement of cholinergic transmission in the impairment

of striatal synaptic plasticity in adult Tor1a+/Dgag mice (Maltese et al., 2014). To verify whether plas-

ticity alterations in juvenile Tor1a+/Dgag mice could also involve cholinergic signaling, slices were pre-

treated with the M1 muscarinic receptor antagonist, pirenzepine (100 nM, 20 min). Pirenzepine

failed to rescue the expression of LTD in Tor1a+/Dgag mice from p28 to p35 (Figure 7E; p>0.05), indi-

cating that distinct mechanisms underlie plasticity alterations at different developmental stages.

Figure 5 continued

width Tor1a+/+, 0.51 ± 0.02 mm, n = 10; Tor1a+/ Dgag, 0.64 ± 0.04 mm, n = 10, unpaired Student’s t-test *p<0.05;

mushroom-type spines Tor1a+/+, 33.92 ± 2.32%, n = 10; Tor1a+/Dgag, 47.81 ± 5.79%, n = 10, unpaired Student’s

t-test *p<0.05). (D) Representative images show dendrites of P26 Tor1a+/Dgag and Tor1a+/+ mice. (E) Histogram

representing dendritic spine density in P60 Tor1a+/Dgag and Tor1a+/+ mice (Tor1a+/+, 9.94 ± 0.41 spines/10 mm,

n = 10; Tor1a+/ Dgag, 10.76 ± 0.50 spines/10 mm, n = 10; unpaired Student’s t-test p>0.05). (F,G) Histograms

showing the quantification of dendritic spine size (F, spine length and head width) and dendritic spine type (G,

mushroom, stubby, thin) in P60 Tor1a+/Dgag, compared to Tor1a+/+ mice (spine width Tor1a+/+, 0.600 ± 0.012 mm,

n = 10; Tor1a+/Dgag, 0.602 ± 0.027 mm, n = 10; p>0.05; mushroom-type spines Tor1a+/+, 61.40 ± 4.81%, n = 10;

Tor1a+/Dgag, 47.92 ± 3.67%, n = 10; *p<0.05; thin spines Tor1a+/+, 19.04 ± 3.85%, n = 10; Tor1a+/ Dgag, 34.64 ±

4.16%, n = 10; *p<0.05; unpaired Student’s t-test). (H) Representative images show dendrites of P60 Tor1a+/Dgag

and Tor1a+/+ mice. Data were collected in a minimum of three different animals per genotype.

DOI: https://doi.org/10.7554/eLife.33331.009

The following source data is available for figure 5:

Source data 1. Analysis of dendritic spines morphology in P26 Tor1a+/Dgag compared to age-matched Tor1a+/+ mice.

DOI: https://doi.org/10.7554/eLife.33331.010

Source data 2. Analysis of dendritic spines morphology in P60 Tor1a+/Dgag compared to age-matched Tor1a+/+ mice.

DOI: https://doi.org/10.7554/eLife.33331.011
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Discussion
The critical period for the onset of symptoms in DYT1 dystonia patients matches an early time-win-

dow of activity-dependent plastic changes in the striatum, which shape motor memory and learning

processes during childhood and early adolescence.

Our systematic analysis of functional and structural synaptic plasticity in DYT1 dystonia demon-

strates: (i) The existence of a critical period when SPNs exhibit premature LTP; (ii) A significant

increase of AMPAR levels in the postsynaptic compartment which correlates with the reduction of

NMDA/AMPA ratio, the increased amplitudes of postsynaptic currents and the rightward shift in the

AMPA I-V curve observed in juvenile Tor1a+/Dgag mice; (iii) A BDNF time-dependent increase in

expression profile, which parallels the alterations described; (iv) abnormal plasticity is associated

with profound changes of dendritic spine density and morphology in juvenile Tor1a+/Dgag; (v) A res-

cue of the synaptic plasticity deficits is obtained by in vivo administration of a TrkB inhibitor.

It is currently unknown why penetrance is only 30% in DYT1 mutation carriers. One possibility is

that at circuit level, motor system is already impaired early during development. The existence of a

defined period in which neurons are particularly susceptible to experience-driven modifications is

well-established, concurrently with structural modifications, and is currently believed to represent a

Figure 6. BDNF protein expression in the striatum of Tor1a+/+and Tor1a+/Dgag mice. (A, B) Striatal BDNF protein expression in Tor1a+/+ and Tor1a+/D

gag mice at postnatal stages (P15, P26, P60). The graphs show the quantification of BDNF/proBDNF ratio at the various ages. Data are represented as

mean ± SEM (Tor1a+/+ P15: 0.67 ± 0.12, N = 4; P26: 0.22 ± 0.08, N = 4; P60: 0.57 ± 0.14, N = 3; Tor1a+/Dgag P15: 0.54 ± 0.08, N = 4; P26: 0.18 ± 0.06,

N = 4; P60: 0.32 ± 0.03, N = 4; one-way ANOVA, *p<0.05; **p<0.01). (C) (Left) Representative WB of proBDNF and BDNF protein levels relative to b-

actin in striatal extracts (30 mg) derived from P26 Tor1a+/+ and Tor1a+/Dgag mice. (Right) The graphs show the quantitative analysis. The amount of

proBDNF and BDNF was quantified relative to b-actin and normalized to wild-type mice. Data are represented as mean ± SEM (proBDNF Tor1a+/+ 1.00

± 0.12, n = 10; Tor1a+/Dgag1.95 ± 0.29, n = 8; BDNF Tor1a+/+: 1.00 ± 0.28, n = 8, Tor1a+/Dgag2.19 ± 0.50, n = 8, Student’s t test: *p<0.05; **p<0.01). (D)

Bdnf mRNA is upregulated in the cortex of Tor1a+/Dgag determined by qRT-PCR. The 2-DDCt method was used to determine the relative expression, and

all of the values are expressed relative to the levels of the wild-type mice as mean ± SEM (Tor1a+/+ 1.000 ± 0.084, n = 10; Tor1a+/Dgag1.399 ± 0.163,

n = 8; Student’s t test: *p<0.05). (E) (Left) Representative Western blots of proBDNF and BDNF proteins relative to b-actin in striatal extracts (15 mg)

derived from Tor1a+/+ and Tor1a+/Dgag adult mice. (Right) The graphs show the quantitative analysis. The amount of proBDNF and BDNF was

quantified relative to b-actin and normalized to wild-type mice. Data are represented as mean ± SEM (proBDNF Tor1a+/+ 1.00 ± 0.19, n = 7, Tor1a+/D

gag1.15 ± 0.17, n = 7, p>0.05; BDNF Tor1a+/+: 1.00 ± 0.23 n = 7, Tor1a+/Dgag0.99 ± 0.25, n = 7, Student’s t test: p>0.05).

DOI: https://doi.org/10.7554/eLife.33331.012

The following source data is available for figure 6:

Source data 1. BDNF protein expression in the striatum of Tor1a+/+ and Tor1a+/Dgag mice.

DOI: https://doi.org/10.7554/eLife.33331.013
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Figure 7. In vivo ANA-12 treatment rescues synaptic plasticity deficits in juvenile Tor1a+/Dgag mice. (A) Time-course of corticostriatal LTD in juvenile

Tor1a+/+ and Tor1a+/Dgag mice (P28-35): after in vivo treatment with the TrkB antagonist ANA-12, the HFS protocol (arrow) induces corticostriatal LTD

expression in juvenile Tor1a+/Dgag mice (Tor1a+/+ P28-35, 65.31 ± 1.44% of control; N = 3, n = 12, p<0.05; Tor1a+/Dgag P28-35, 63.41 ± 4.39% of control;

N = 3, n = 10; paired Student’s t test p<0.05). (Bottom) Representative EPSPs recorded before (pre) and 20 min after (post) HFS protocol. (B) Time-

course of corticostriatal LTP after in vivo ANA-12 treatment: LTP displays a physiological amplitude in SPNs from in P24-35 Tor1a+/Dgag compared to

wild-type littermates (Tor1a+/+ P24-35, 144.55 ± 2.67% of control; N = 3, n = 8; Tor1a+/Dgag P24-35, 148.11 ± 10.55% of control; N = 3, n = 9; Tor1a+/Dgag

vs. Tor1a+/+ Student’s t test p>0.05). (Bottom) Sample traces recorded pre and post LTP induction. (C) AMPAR-mediated currents recorded from P26

SPNs at HP from �70 mV to + 40 mV after in vivo treatment of Tor1a+/+ and Tor1a+/Dgag mice with ANA-12. The treatment normalizes the current-

voltage relationship in Tor1a+/Dgag neurons (HP=�70 mV: 2-way ANOVA p>0.05) and the rectification index (Tor1a+/+, 0.51 ± 0.03, N = 3, n = 3; Tor1a+/

Dgag, 0.45 ± 0.04, N = 3, n = 5; Student’s t test p>0.05) (D) In vivo treatment with ANA-12 does not restore corticostriatal LTD in adult (P60) SPNs

recorded from Tor1a+/Dgag mice (vehicle: 95.66 ± 9.09% of control, N = 3, n = 8; ANA-12: 98.75 ± 11% of control, N = 3, n = 4; paired Student’s t test

p>0.05). (E) Slice pre-treatment with pirenzepine (100 nM) does not rescue LTD expression in P28-35 Tor1a+/Dgag SPNs (vehicle: 101.54 ± 1.07% of

control, N = 3, n = 3; pirenzepine: 100.34 ± 8.96% of control; N = 3, n = 3; paired Student’s t test p>0.05). (Bottom) Superimposed traces of EPSPs

recorded pre and 20 min post HFS delivery.

DOI: https://doi.org/10.7554/eLife.33331.014

The following source data is available for figure 7:

Source data 1. In vivo ANA-12 treatment rescues synaptic plasticity deficits in juvenile Tor1a+/Dgag mice.

DOI: https://doi.org/10.7554/eLife.33331.015
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nodal mechanism both in physiological and pathological conditions (Turrigiano and Nelson, 2004;

Johnston, 2004; Meredith, 2015; Calabresi et al., 2016).

Our electrophysiological assessment of synaptic plasticity identifies a rather narrow time-window,

between P15 and P26 when striatal SPNs exhibit a premature LTP, whereas LTD cannot be evoked.

Although it has to be cautiously reminded that these alterations match those described in adult

DYT1 striata (Martella et al., 2014), the time-course performed in the present study indicates their

abnormal early appearance, in a developmental phase when normal striatal SPNs do not yet exhibit

long-lasting synaptic changes. Of interest, the loss of LTD was observed in a similar time frame in a

novel model with a rare missense variant in the Tor1a gene (Bhagat et al., 2016).

Moreover, we describe, along with electrophysiological deficits, molecular and structural changes

at striatal synapses that appear to be limited to a specific time-window. Striatal LTP either in mature

tissue preparation or in the developing striatum is dependent on the activation of NMDAR

(Calabresi et al., 1992b; Partridge et al., 2000), whereas LTD depends on AMPAR

(Calabresi et al., 1992a). Our electrophysiological and biochemical characterization demonstrates

an increase in currents mediated by AMPAR, consistent with the increased amplitude of mEPSCs,

and additionally, the NMDAR/AMPAR ratio was significantly reduced in SPNs from DYT1 mice. A

major mechanism regulating synaptic strength involves the balance between synaptic insertion and

removal of glutamate receptors into the postsynaptic membrane (Gong and De Camilli, 2008). Spe-

cifically, loss of homeostatic regulation of excitatory synapses in distinct neuronal subtypes involve

postsynaptic changes in accumulation of AMPAR (Lissin et al., 1998; O’Brien et al., 1998). Accord-

ingly, we observed a significant increase of both GluA1 and GluA2 subunits of AMPARs in the post-

synaptic compartment of P26 Tor1a+/Dgag mice compared to controls, suggestive of an increased

surface expression of AMPARs. Of interest, the significant increase of the phosphorylation of GluA1-

Ser845, a well-established correlate of LTP (Oh et al., 2006; Bassani et al., 2013) is consistent with

the abnormal LTP expression measured in DYT1 mice. Moreover, GluA1-Ser845 (Roche et al., 1996)

plays a key role in the synaptic delivery of GluA1-containing AMPARs by LTP (Esteban et al., 2003;

Bassani et al., 2013) and is involved in surface reinsertion/stabilization of AMPARs (Ehlers, 2000),

thus providing a molecular mechanism for the observed increase of AMPARs at postsynaptic mem-

branes in P26 Tor1a+/Dgag mice compared to controls. Thus, we hypothesize that the loss of LTD

may be related to the aberrant composition of striatal AMPARs observed in mutant mice.

The identification of increased AMPAR subunit levels in the postsynaptic compartment offers new

opportunities to identify potential regulators of AMPAR turnover. Neurotrophins have been impli-

cated in glutamatergic synapse development and plasticity, suggesting a potential role in postsynap-

tic proteins distribution (Causing et al., 1997; McAllister et al., 1997; Kong et al., 2001). Previous

work elucidated the role of BDNF in the regulation of AMPAR expression and function, including

synaptic AMPAR subunit trafficking (Narisawa-Saito et al., 1999; Jourdi and Kabbaj, 2013).

Indeed, BDNF treatment acutely controls both AMPAR subunits and their scaffolding proteins traf-

ficking, thereby modifying the strength of synaptic activity (Minichiello et al., 1999; Mauceri et al.,

2004). Remarkably, we observed an enhancement of pro-BDNF and BDNF protein level in P26

Tor1a+/Dgag mice, which appears critical for the onset of abnormal neurophysiological phenotype in

DYT1 dystonia. Consistently, we obtained a functional rescue of synaptic plasticity and AMPA-medi-

ated currents with the competitive antagonist of BDNF TrkB receptor ANA-12 (Cazorla et al.,

2011).

Activity-dependent synaptic plasticity as well as composition and activity of NMDARs and

AMPARs strictly govern modifications of dendritic spine morphology, leading to a long-lasting struc-

tural plasticity. Yet, BDNF also plays a major role in spine maturation in several brain regions, includ-

ing the striatum (Baquet et al., 2004; Rauskolb et al., 2010). Thus, the abnormal increase in BDNF

expression fits with the abnormalities in spine morphology we observed. In P26 Tor1a+/Dgag mice,

we measured an increase in mushroom spines, suggestive of a ‘premature’ maturation process

accompanied by an overall decrease in the density of dendritic spines. It is well-known that expres-

sion patterns of the GluN2 subunits of NMDARs at dendritic spines change during the first postnatal

weeks. In particular, GluN2A expression increases from the second postnatal week to become widely

expressed and abundant throughout the brain (Bellone and Nicoll, 2007; Gray et al., 2011). Yet, in

agreement with the reduction of the NMDAR decay time, we found an increase of postsynaptic

GluN2A in P26 Tor1a+/Dgag mice suggesting a ‘premature’ GluN2A/GluN2B switch, thus indicating

the existence of a molecular and morphological early maturation of the excitatory synapse in this
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DYT1 model. Moreover, the existence of a close coordination between spine size and AMPAR levels

at synaptic membranes has been previously reported (Kopec et al., 2007; Malinverno et al., 2010)

and spine volume has been positively correlated with the strength of AMPAR-mediated synaptic

transmission. Accordingly, in Tor1a+/Dgag mice we found a significant increase of spine head width,

an increase in mushroom spines and a concomitant increase of both GluA1 and GluA2 subunits of

AMPARs.

Most of the molecular and structural alterations described in juvenile DYT1 mice were not con-

firmed at our analyses performed in adult (P60) mice. Indeed, inhibition of BDNF with ANA-12 did

not offset the plasticity deficits in adult mice. Additionally, the anticholinergic agent pirenzepine

failed to rescue the plasticity deficits in juvenile animals, contrarily to what reported in adults

(Dang et al., 2012; Martella et al., 2014), indicating that distinct mechanisms sustain the abnormal

patterns of synaptic activity at different developmental ages. Future work is required to address the

precise mechanisms governing this switch.

Collectively, we demonstrate that the rise of BDNF, in a restricted time-window, drives AMPA

receptor composition changes and, consequently, structural modifications in spine morphology,

resulting in the loss of homeostatic regulation of synaptic plasticity early in postnatal life.

Our hypothesis is also consistent with the clinical observation that the beneficial effects of Deep

Brain Stimulation (DBS) in dystonic patients is more effective in young patients, as compared to

patients implanted later in life (Isaias et al., 2008). Additionally, compared to the prompt efficacy

observed in Parkinson’s disease patients, weeks are commonly required to obtain symptomatic relief

following DBS, and improvements may continue to be manifest over time (Vercueil et al., 2001;

Krauss, 2002; Vidailhet and Pollak, 2005). It is plausible that severity of abnormal plasticity is

related to disease duration, thus justifying the longer time required to erase aberrant plasticity

patterns.

In a therapeutic perspective, these sensitive periods might be considered as temporal windows of

opportunity, during which specific molecular steps could be targeted to prevent aberrant plasticity

to develop.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Gene (Mus musculus) Tor1a MGI:1353568 Gene ID: 30931 official full name: torsin
family 1, member A (torsin A)

Strain, strain
background
(M. musculus)

C57BL/6J mice Charles River catalog number
B6JSIFE10SZ - C57BL/6J SPF/VAF;
RRID:IMSR_JAX:000664

Genetic reagent
(M. musculus)

heterozygous knock-in
Tor1a+/Dgag

Goodchild et al. (2005) - maintained on the C57BL
/6J background

Antibody monoclonal anti-PSD-95 Neuromab clone (k28/43) - catalog
number 75–028;
RRID:AB_2292909

dilution 1:2000 in I-Block

Antibody monoclonal anti-GluN2B Neuromab clone 59/20 - catalog
number 75–097;
RRID:AB_10673405

dilution 1:1000 in I-Block

Antibody polyclonal anti-GluA1 Merck Millipore catalog number AB1504;
RRID:AB_2113602

dilution 1:1000 in I-Block

Antibody polyclonal anti-phospho
-GluA1 (Ser845)

Merck Millipore catalog number 04–1073;
RRID:AB_1977219

dilution 1:1000 in I-Block

Antibody polyclonal anti-GluN2A Sigma-Aldrich catalog number M264
RRID:AB_260485

dilution 1:1000 in I-Block

Antibody monoclonal anti-GluA2 Neuromab clone L21/32 - catalog
number 75–002;
RRID:AB_2232661

dilution 1:1000 in I-Block

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Antibody monoclonal anti-a-tubulin Sigma-Aldrich clone DM1A - catalog
number T9026;
RRID:AB_477593

dilution 1:5000 in I-Block

Antibody goat anti-DARPP-32 R and D system catalog number AF6259;
RRID:AB_10641854

dilution 1:500 in I-Block

Antibody mouse anti-Enkephalin Millipore catalog number MAB350;
RRID:AB_2268028

dilution 1:1000 in I-Block

Antibody mouse anti-b-actin Sigma Aldrich catalog number A5441;
RRID:AB_476744

dilution 1:20000 in I-Block

Commercial assay
or kit

Clarity Western ECL
Substrate

BioRad - reagent used to visualize
protein bands with Chemidoc
Imaging System

Commercial assay
or kit

ECL reagent GEHealthcare catalog number
GERPN2232

reagent used to visualize
protein bands with membranes
were exposed to film

Commercial assay
or kit

TRI-reagent Sigma Aldrich catalog number T9424 reagent used to RNA extraction

Commercial assay
or kit

DNAase I Invitrogen catalog number AMPD1-
1KT

reagent used for elimination
of DNA from RNA

Commercial assay
or kit

Transcriptor First Strand
cDNA Synthesis Kit

Roche catalog number
04379012001

reagent used to reverse
transcribe RNA

Commercial assay
or kit

Extract-N-AmpÔ Tissue
PCR Kit

SIGMA catalog number XNAT2 genotyping primers UP- AGT
CTG TGG CTG GCT CTC C;
Low- CCT CAG GCTGCT
CAC AAC C

Chemical compound,
drug

ANA-12 Sigma-Aldrich catalog number SML0209 in vivo administration

Chemical compound,
drug

CNQX disodium salt Tocris catalog number 0190/10 application in bath during
electrophysiology analysis

Chemical compound,
drug

(+)-MK 801 maleate Tocris catalog number 0924/10 application in bath during
electrophysiology analysis

Chemical compound,
drug

Tetrodotoxin citrate (TTX) Tocris catalog number 1069/1 application in bath during
electrophysiology analysis

Chemical compound,
drug

Picrotoxin Tocris catalog number 1128/1 application in bath during
electrophysiology analysis

Chemical compound,
drug

Biocytin Tocris catalog number 3349/10 electrodes filled with biocytin,
versatile marker used for
neuroanatomical investigations
of neuron IHC

Chemical compound,
drug

Naspm trihydrochloride Tocris catalog number 2766/10 application in bath during
electrophysiology analysis

Software, algorithm ImageLab BioRad - software used for quantification
of protein bands in western
blotting experiments

Software, algorithm ImageJ software NIH;
Schneider et al. (2012)

RRID:SCR_003070 software used for the quantification
of protein bands in western
blotting and confocal laser
scanning microscope

Software, algorithm ClampFit 9 pClamp Molecular Devices;
RRID:SCR_011323

data analysis

Software, algorithm Origin 8.0 Microcal RRID:SCR_002815 data analysis

Software, algorithm Prism 5.3 GraphPad RRID:SCR_002798 data analysis
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Animal model
Studies were carried out in juvenile (P15-P35) and adult (P60-P75) knock-in Tor1a+/Dgag mice hetero-

zygous for DE-torsinA, a mutation that removes a single glutamic acid residue (DE) from the torsinA

protein, and in their wild-type Tor1a+/+ littermates (Goodchild et al., 2005). Genotyping was per-

formed as described (Ponterio et al., 2018). Animal breeding, on a C57Bl/6J background, and han-

dling were performed in accordance with the guidelines for the use of animals in biomedical

research provided by the European Union’s directives and Italian laws (2010/63EU, D.lgs. 26/2014;

86/609/CEE, D.Lgs 116/1992). The experimental procedures were approved by Fondazione Santa

Lucia and University Tor Vergata Animal Care and Use Committees, and the Italian Ministry of Health

(authorization #223/2017-PR).

Experimental design
Age- and sex-matched wild-type and mutant littermates were randomly allocated to experimental

groups. Investigators performing experiments and data analysis were blind to knowledge of geno-

type and treatment. Each observation was obtained from an independent biological sample. For

electrophysiology, each cell was recorded from a different brain slice. All data were obtained from

at least two animals in independent experiments. Biological replicates are represented with ‘N’ for

number of animals and ‘n’ for number of cells. Sample size for any measurement was based on the

ARRIVE recommendations on refinement and reduction of animal use in research, as well as on our

previous studies.

Electrophysiology
Brain slice preparation
Mice were sacrificed by cervical dislocation, brains removed and sliced with a vibratome (Leica

Microsystems) in oxygenated Krebs’ solution (in mM: 126 NaCl, 2.5 KCl, 1.3 MgCl2, 1.2 NaH2PO4,

2.4 CaCl2, 10 glucose, 18 NaHCO3). Coronal and parasagittal corticostriatal slices (200–300 mm)

were incubated in Krebs’ solution at room temperature for 30 min. Then, individual slices were trans-

ferred into recording chambers continuously superfused with Krebs’ solution (32–33˚C) saturated

with 95% O2 and 5% CO2.

Patch-clamp recordings
Recordings were performed with AxoPatch 200B amplifiers and pClamp 10.2 software (Molecular

Devices). For voltage-clamp experiments, pipettes (2.5–5 MW) were filled with Cs+ internal solution

(in mM: 120 CsMeSO3, 15 CsCl, 8 NaCl, 10 TEA-Cl, 10 HEPES, 0.2 EGTA, 2 Mg-ATP, and 0.3 Na-

GTP; pH 7.3 adjusted with CsOH; 300 mOsm). For whole-cell recordings of glutamatergic sEPSCs,

SPNs were clamped at HP=�70 mV in the presence of the GABAA receptor antagonist PTX (50 mM).

For GABAergic sIPSCs, SPNs were recorded at HP =+ 10 mV in MK801 (30 mM) and CNQX (10 mM)

to block NMDARs and AMPARs, respectively. Both mEPSCs and mIPSCs were measured by adding

1 mM TTX. PPR was measured at HP=�70 mV in PTX by delivering two stimuli at 25–1000 ms ISI.

Synaptic strength was analyzed by measuring the NMDAR/AMPAR ratio at HP =+ 40 mV in PTX.

The AMPAR–mediated component of EPSC was isolated in MK-801 and the NMDAR component

was obtained by digital subtraction of the AMPAR component from the dual-component EPSC

(Sciamanna et al., 2012). The AMPAR and NMDAR IV relationships were measured in the presence

of PTX plus MK-801 or CNQX, respectively. The RI was calculated as ratio of the mean EPSC ampli-

tudes measured at +40 mV and �70 mV.

Sharp-electrode recordings
Current-clamp recordings of SPNs were performed with intracellular electrodes filled with 2M KCl

(30–60 MW). Corticostriatal EPSPs were recorded in PTX (50 mM). HFS (three trains 100 Hz, 3 s, 20 s

apart) was delivered at suprathreshold intensity to induce LTD. Magnesium was omitted to optimize

LTP induction (Calabresi et al., 1992b). The EPSP amplitude was averaged and plotted over-time as

percentage of control pre-HFS amplitude.
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Gene expression analysis
P26 Tor1a+/+ and Tor1a+/Dgag mouse cortex was collected in PCR clean tubes and stored at �80˚C.
Total RNA was isolated using TRI-reagent (Sigma Aldrich), quantified and treated with DNAase I

(Invitrogen). Integrity was confirmed by 1% agarose gel electrophoresis. RNA was reverse-tran-

scribed using random hexamer primer and anchored-oligo (dT)18 primer according to the manufac-

turer’s instructions (Transcriptor First Strand cDNA Synthesis Kit, Roche). Real-time PCR was

performed on 25 ng cDNA by using LightCycler 480 Probes Master (04707494001, Roche) with

Roche Light Cycler LC480 system, Bdnf and Hprt1 primers designed on the Roche Universal Probe

Library Assay Design Center: https://configurator.realtimeready.roche.com/assaysupply_cp/pages/

singleAssays/searchResult.jsf

Raw Ct values for Bdnf gene were normalized to the endogenous control gene Hprt1. Technical

triplicates were analyzed for all samples and mean values were utilized for statistical analysis. The rel-

ative expression was determined using the 2-DDCt method (Livak and Schmittgen, 2001).

Immunohistochemistry
To identify direct- and indirect-pathway SPNs electrodes were loaded with biocytin, as described

(Martella et al., 2009). Briefly, slices were fixed with 4% PFA in 0.12 M PB and 30 mm thick sections

were cut from each slice with a freezing microtome, then dehydrated with serial alcohol dilutions to

improve antigen retrieval and reduce background (Buchwalow et al., 2011). We used the following

primary antibodies: goat anti-DARPP-32 (1:500 AF6259, R and D system), mouse anti-Enkephalin

(1:1000 MAB350, Millipore), and secondary antibodies: anti-goat alexa 647 (Invitrogen), anti-mouse

cyanine 3 (Jackson ImmunoResearch) and streptavidin-conjugated alexa 488 (Life Technologies). All

sections used for analysis were processed together. Images were acquired with a LSM700 Zeiss con-

focal laser scanning microscope and analyzed with ImageJ software (NIH; Schneider et al., 2012).

Noise was reduced by applying background subtraction in ImageJ.

Subcellular fractionation and western blotting (WB)
To obtain a preparation that contains selectively proteins of the post-synaptic density (PSD), subcel-

lular fractionation of striatal tissue was performed as reported (Gardoni et al., 2006; Paillé et al.,

2010) with minor modifications. Briefly, striata were homogenized with a Teflon-glass potter in ice-

cold 0.32M sucrose containing 1 mM HEPES pH 7.4, 1 mM MgCl2,1mM EDTA, 1 mM NaHCO3, 0.1

mM phenylmethanesulfonylfluoride (PMSF) in the presence of a complete set of proteases and phos-

phatase inhibitors (CompleteTM Protease Inhibitor Cocktail Tablets and PhosSTOPTM Phosphatase

Inhibitor Cocktail, Roche Diagnostics). The homogenized tissue was centrifuged at 13,000 g for 15

min. The pellet was re-suspended in a buffer containing 75 mM KCl and 1% Triton X-100 and spun

at 100,000 g for 1 hr. The final pellet, referred to as Triton-insoluble postsynaptic fraction (TIF), was

homogenized in a glass-glass potter in 20 mM HEPES supplemented with CompleteTM tablets and

stored at �80˚C until use. Protein samples were separated onto an acrylamide/bisacrylamide gel at

the appropriate concentration, transferred to a nitrocellulose membrane and immunoblotted with

the appropriate primary and HRP-conjugated secondary antibodies. For WB analysis, the following

unconjugated primary antibodies were used: polyclonal anti-GluN2A antibody (Sigma-Aldrich);

monoclonal anti-GluN2B antibody (NeuroMab); polyclonal anti-GluA1 antibody (Merck Millipore);

polyclonal anti-phospho-GluA1 (Ser845; Merck Millipore); monoclonal anti-GluA2 antibody (Neuro-

Mab); monoclonal anti-PSD-95 antibody (NeuroMab); monoclonal anti-a-tubulin antibody (Sigma-

Aldrich). Membrane development was performed with the reagent Clarity Western ECL Substrate

(Bio-Rad) and labeling was visualized by Chemidoc Imaging System and ImageLab software (Bio-

Rad). For quantification, each protein was normalized against the corresponding a-tubulin band.

WB analysis of BDNF on mouse striatum was performed as described (Sciamanna et al., 2015;

Ponterio et al., 2018). Protein extracts (15–30 mg) were loaded with page LDS sample buffer

(Invitrogen, Waltham, Massachusetts, USA) containing DTT and denatured at 95˚C for 5 min. Pro-

teins were separated on 15% SDS-PAGE, and transferred onto 0.45 mm polyvinylidene fluoride

(PVDF) membranes. The following primary antibodies were utilized: rabbit anti-BDNF (1:200 sc-546,

SantaCruz Biotechnology) and mouse anti-b-actin (1:20.000 A5441, Sigma Aldrich), as loading con-

trol, followed by anti-rabbit or anti-mouse horseradish peroxidase (HRP)-conjugated secondary anti-

bodies. Immunodetection was performed by ECL reagent (GEHealthcare) and membranes were
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exposed to film (Amersham). Quantification of the band intensity on scanned filters was achieved by

ImageJ software.

Spine morphology
Carbocyanine dye DiI (Invitrogen) was used to label neurons as previously described (Kim et al.,

2007; Stanic et al., 2015). Images were taken using an inverted LSM510 confocal microscope

(Zeiss). For morphological analysis, cells were chosen randomly for quantification from four to eight

different coverslips; images were acquired using the same settings/exposure times, and at least 10

cells for each condition were analyzed. Morphological analysis was performed with ImageJ software

to measure spine density and size. For each dendritic spine the length, the head and neck width

were measured, which was used to classify spines into categories (thin, stubby and mushroom)

(Harris et al., 1992).

Statistical analysis
Data were analysed with ClampFit 9 (pClamp, Molecular Devices), Origin 8.0 (Microcal) and Prism

5.3 (GraphPad) softwares. All data were obtained from at least two independent experiments and

are represented as mean ± SEM. Statistical significance was evaluated, as indicated in figure

legends, using paired and unpaired Student’s t test, and one-way ANOVA with post-hoc Tukey test

and two-way ANOVA with Bonferroni posttest for group comparisons. Statistical tests were two-

tailed, the confidence interval was 95%, and the alpha-level used to determine significance was set

at p<0.05.
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