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Abstract

Successful ovulation and oocyte fertilization are essential prerequisites for the beginning of life in sexually
reproducing animals. In mammalian fertilization, the relevance of the protein coat surrounding the oocyte
plasma membrane, known as zona pellucida, has been widely recognized, while, until not too long ago, the
general belief was that the cumulus oophorus, consisting of follicle cells embedded in a hyaluronan rich
extracellular matrix, was not essential. This opinion was based on in vitro fertilization procedures, in which a
large number of sperms are normally utilized and the oocyte can be fertilized even if depleted of cumulus cells.
Conversely, in vivo, only very few sperm cells reach the fertilization site, arguing against the possibility of
a coincidental encounter with the oocyte. In the last two decades, proteins required for HA organization in
the cumulus extracellular matrix have been identified and the study of fertility in mice deprived of the
corresponding genes have provided compelling evidence that this jelly-like coat is critical for fertilization. This
review focuses on the advances in understanding the molecular interactions making the cumulus environment
suitable for oocyte and sperm encounter. Most of the studies on the molecular characterization of the cumulus
extracellular matrix have been performed in the mouse and we will refer essentially to findings obtained in this

animal model.

© 2017 Elsevier B.V. All rights reserved.

Introduction

In most mammals, the release of mature oocyte at
ovulation requires tight control of extracellular matrix
(ECM) remodeling in different regions of the ovarian
follicle. At this stage, three somatic cell compart-
ments can be identified in the follicle that must
cooperate and cross-talk for accomplishing the final
task: the epithelium of granulosa cells lining the
follicular fluid-filled cavity, the epithelium of cumulus
cells (CCs) surrounding the oocyte and a specialized
and vascularized connective tissue, namely theca
cells, which is separated from the granulosa cells by
a basal membrane (Fig. 1). An inflammatory-like
process is triggered in the follicle by the physiological
surge of luteinizing hormone (LH) or by the injection
of an ovulatory dose of human chorionic gonadotro-
pin (hCG). This event results in increased perme-
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ability of theca vasculature, massive production of
prostaglandin E, and selective degradation of
perifollicular matrix by granulosa cells leading to
the formation of a thinner area at the follicular apex
[1]. Conversely, CCs synthesize a large amount of
a hyaluronan (HA) matrix, under the combined action
of paracrine stimuli produced by both granulosa
cells and the enclosed oocyte [2,3]. The cells lose
epithelial arrangement, move away from each other
and become dispersed in a highly hydrated extra-
cellular matrix (ECM) with viscoelastic characteris-
tics. As a result, the space between cells enlarges
and consequently the total volume of the cumulus
increases, a process for this reason named cumulus
expansion. As ovulation approaches, the follicle wall
breaks, and a hole is formed on the ovarian surface
sufficiently large to allow part of cumulus mass to
pass through. A transient deformation of the cumulus
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Fig. 1. Schematic representation of the ovary containing follicles at the different stages of folliculogenesis. A
magnification of the pre-ovulatory follicle is reported, and the localization of all the different cell compartments discussed in

the review are indicated.

ECM subsequently drives the egg out of the follicle.
Cumulus cells and the oocyte remain firmly bound
within the ECM so that they are not dispersed during
their extrusion and transfer to the fertilization site [4].
Electron microscopy analyses shows a continuum of
a mesh-like network of filaments and granules
anchored to the surface of the CCs and extending
up to the zona pellucida (ZP) [5]. Indeed, the
innermost cell layer of the cumulus, the corona
radiata cells, lose the contact with the oocyte and
retract the cytoplasmic projections crossing the ZP,
leaving the synthesized HA matrix entangled in
pores of this internal oocyte envelop [5—-7]. Cumulus
ECM is required by the sperm for successful in vivo
oocyte fertilization, but it is stable just for few hours
after ovulation. The dispersion of the cumulus matrix
progressively occurs, paralleling oocyte aging [8].
Thus, this provisional HA matrix has the function to
favor the fertilization of oocytes with high embryo
developmental capacity.

Assembly and disassembly of the
hyaluronan matrix

The observation, reported in 1942, that the
viscoelastic ECM embedding the CCs around the
ovulated oocyte is quickly dispersed by hyaluroni-
dase digestion led to the suggestion that HA is the
major structural macromolecule in this matrix [9].
HA is a very large, polyanionic glycosaminoglycan
which expands to a highly solvated coil in free
solution attracting water and increasing the space
between cells. Isolation of mouse cumulus cell-
oocyte complexes (COCs), and identification of
culture conditions able to induce its expansion in
vitro provided an invaluable tool for understanding
the complex cell interactions and changes in gene

expression required for HA synthesis and organiza-
tion in the ECM. Follicular stimulating hormone
(FSH) or epidermal growth factor (EGF), as well as
EGF-like growth factors amphiregulin, betacellulin
and epiregulin, are potent stimulators of in vitro COC
expansion [10-12]. All these factors induce the
phosphorylation of mitogen-activated protein kinase
kinase- (MEK) activated kinases, extracellular signal-
regulated kinases 1 and 2 (ERK1 and ERK2), which
is the intracellular signaling pathway obligatory for
COC expansion, as well as for triggering all the events
preceding ovulation [13,14]. Beside FSH/EGF, ex-
pansion of the mouse COC requires the concomitant
stimulation by oocyte-secreted paracrine factor be-
longing to the transforming growth factor beta (TGF@)
superfamily [15], likely growth differentiation factor
9 (GDF9) or its variant growth differentiation factor
9 heterodimer (GDF9/BMP15) [16].

As a result of this interplay, the expression of
hyaluronan synthase 2 (HAS2) dramatically in-
creases within 2—3 h from the stimulus both in vitro
and in vivo [17]. Hyaluronan synthesis is transient
and is maximal between 3 and 12 h, and then
declines toward basal levels at about 15-18 h [18].
Staining of HA in the follicle showed that HA
synthesis is extended to the granulosa cells nearby
the COC and to the innermost layers of granulosa
cells adjacent to the follicular antrum, named antral
granulosa cells, while little or no HA was synthesized
in the outermost layers of granulosa cells, named
mural granulosa cells. Likely, regional differences
in follicular HA production reflect the formation of a
concentration gradient of the oocyte factor due to its
binding or inactivation by the responding cells [19].
It is well known that heparan sulfate proteoglycans
(HSPGs) bind the latent form of TGFB family
members regulating their signaling and extracellular
location. The HSPG Glypican 1 has been proposed
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as a candidate for restricting the diffusion and
enhancing the localized signal of GDF9 in the
cumulus. This proteoglycan is rapidly and highly
expressed by CCs during expansion and is associ-
ated to the HA matrix [20].

Antral and the more proximal mural granulosa
cells become incorporated into the COC and are
released from the follicle as a single mucified mass.
In optimal culture conditions the net production of HA
is about 4 pg per cumulus cell (about 4 ng/COC),
and yield a final concentration of approximately
0.5 mg/ml at the completion of expansion (based
on the estimate volume of a COC), which is nearly
the same as in vivo[18,19]. Expanded COCs are only
temporarily deformed when subjected to shearing
forces, and proteins are required to organize and
maintain HA in such a highly structured gel, conferring
to the COC ECM unique physical properties. Disas-
sembly of the cumulus ECM begins soon after the
completion of expansion, and continues thereafter in
parallel with a progressive apoptosis of CCs, leading
to COC dispersion in about 15 h [8,21]. Hyaluronan
is released from the ECM into the medium without
any significant variation in size, and protein synthesis
inhibitors prevent ECM disassembly, suggesting
that this process does not depend on HA cleavage,
but rather on degradation of proteins involved in its
organization [21,22]. In agreement, the expression of
several proteases, such as urokinase plasminogen
activator and a disintegrin and metalloproteinase
with thrombospondin motifs 1 and 4 (ADAMTS1 and
ADAMTS4) are upregulated or activated at this time
[8,23]. A decrease of the intracellular cyclic adeno-
sine monophosphate (cAMP) level appears to be
functional in the execution of this program because
treatment of in vivo and in vitro expanded COCs with
cAMP analogues or adenylate cyclase activators
inhibits HA release and cumulus cell apoptosis for
several days [21]. Exogenous HA oligomers (dec-
asaccharides or larger), which compete for the
interaction of HA binding proteins, do not accelerate
the physiological disaggregation [22] neither displace
HA from the matrix preserved by cAMP analogue
treatment (personal communication). These findings
suggest that assembly of such elastic ECM requires
cooperation of several structural proteins in order
to stably and tightly crosslink HA strands. Presently,
three proteins meeting these criteria have been
identified.

It has been demonstrated that HA organization in
the cumulus ECM requires the participation of a
serum protein, inter-a-trypsin inhibitor (lal or ITI), and
other two proteins, both synthesized by CCs under
oocyte influence: pentraxin 3 (PTX3 or TSG14) and
tumor necrosis factor alpha-induced protein 6
(TNFAIP6 or TSG-6). Knock out mice of each of
these proteins produce the same phenotype con-
sisting in defective COC expansion, failure of oocyte
fertilization and sterility [24—-27].

Cooperation between lal and TSG-6 in
cumulus matrix formation

lal family proteins are mainly secreted by the liver
and present in the blood at considerably high
concentrations (0.15-0.5 mg/ml). Indeed, they are
peculiar proteoglycans formed by an about 40 kDa
light chain protein carrying a single chondroitin 4-
sulfate chain, named bikunin, to which 1 or 2 (out of
3) accessory proteins with high homology sequence,
named heavy chains (HC1, HC2, HC3), are cova-
lently linked [28,29]. In the trans-Golgi network, the
large C-terminal extension (240-280 amino acid
residues) of HCs is released and HCs are coupled to
bikunin chondroitin sulphate chain via an ester bond
between the C-terminal aspartate residue of the HCs
and an internal N-acetylgalactosamine in the chon-
droitin sulphate [30,31]. The linkage of one HC
brings to the formation of pre-a-trypsin inhibitor (Pal)
(~130 kDa) while the linkage of two HCs forms lal
(~220 kDa). These molecules are specifically asso-
ciated to the HA matrix formed during several
inflammatory diseases and accumulate within in-
flamed tissues [32]. Pioneering studies, performed to
assess the culture condition able to induce COC
expansion, demonstrated that serum was indispens-
able to form the muco-elastic ECM. In its absence,
FSH-stimulated CCs synthesized HA at normal rate
and size but they failed to organize it in the
intercellular space, so that most of the HA diffused
into the culture medium, and COC disaggregated
[10,18,22,33]. Vessel permeability allows the diffu-
sion of lal into the follicular fluid [34—36], and its co-
immunolocalization with HA in the preovulatory
follicle supported its physiological role [37]. The
direct participation of these serum derived molecules
in cumulus ECM formation was first provided by the
evidence that they are necessary and sufficient for
substituting serum in retaining HA within the cumu-
lus, and that lal depleted serum is inactive [37,38].
Purified bovine Pal and lal as well as human lal are
almost identical in their ability to stabilize the
expanding mouse cumulus ECM in vitro [37,39,40]
although they differ in HCs combinations. lal in
human and mouse is composed of HC1 and HC2,
while in cow the HC3 and HC2 are present in lal and
the HC2 is present in Pal [41]. The high sequence
homology among the species and between the three
types of HCs likely account for their comparable
efficacy.

It has been proven that HCs are transferred from
lal CS to HA during COC expansion, forming a HC-
HA covalent complex [39]. Analogous complexes
were found in synovial fluid of arthritic patients [42],
and mass spectrometry showed that an ester bond
was formed between HC and HA, suggesting that
the transfer of HCs from lal CS to HA occurs by a
transesterification reaction accompanied by the
release of bikunin proteoglycan [43]. The importance
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of this reaction in cumulus ECM formation has been
proven by the deletion of bikunin gene. Bikunin-null
mice exhibited female sterility due to fertilization
failure, associated with abnormal COC matrix. After
an ovulatory stimulus, CCs became scattered in the
antral cavity of the follicle and during ovulation most of
them were dissociate from the oocyte. HCs were not
covalently linked to HA even though unprocessed free
HCs were circulating in the blood. The expansion
process could be rescued by intraperitoneal adminis-
tration of intact lal but not bikunin alone [24]. These
results suggest that the construction of the cumulus
ECM requires the formation of the HC-HA complex and
that bikunin plays an indirect role by transporting the
HCs to the ovarian follicle, thereby allowing the
transesterification reaction. TSG-6 is the co-factor
and catalyst of this reaction.

TSG-6 is a ~35 kDa secreted glycoprotein known
as a natural modulator of inflammatory responses
[44]. This protein consists of an N-terminal link
module and a C-terminal CUB domain. It binds to HA
with high affinity via the link module, which is a key
feature of the members of the hyaladherins family.

The expression of TSG-6 is strongly upregulated
both in granulosa and CCs in the preovulatory follicle
and temporally correlated with HA matrix deposition
around the oocyte [26,45,46]. Immunostaining of
ovarian sections showed colocalization of TSG-6
with HA and lal in the cumulus ECM. Western blot
analyses of ovulated COC revealed that TSG-6 is
present as a free protein (35 kDa) and as a species
of ~120 kDa that is immunoreactive with both anti-
TSG-6 and anti-lal antibodies [47,48]. Mass spec-
trometry of peptides derived from the ~120 kDa
species demonstrated that it contains TSG-6, HC1
and HC2 (but not bikunin) [47]. These complexes
were cleaved by treatment with alkali, suggesting
the presence of an ester bond. The indispensable
role of TSG-6 for HC-HA complex formation and
COC expansion has been established by the study
of transgenic mice [25]. Tsg-6 null female mice are
infertile due to their inability to form the cumulus
ECM, a phenotype that correlates with the total
absence of HC-HA complexes in the ovaries of these
animals, similar to bikunin-null mice. Accordingly,
serum was not sufficient to support ECM organiza-
tion by COC isolated from Tsg-6 null mice unless
recombinant TSG-6 was added to the culture
medium. It was then proposed that TSG-6-HC com-
plexes could act as intermediates in the transfer
of HC to HA. Biochemical analysis using purified
human lal and recombinant human TSG-6 demon-
strated that HC and TSG-6 in the complexes are
linked through ester bonds and that TSG-6 acts as a
co-factor and catalyst in the translocation of HC from
CS of bikunin to HA via two sequential transester-
ification reactions [49,50].

Although HCs of lal lack overall sequence
homology to the characterized HA binding proteins,

they show some ability to bind to HA, likely through
basic amino acid residue-rich regions [38,51]. In
addition, agarose gel electrophoresis and gel filtra-
tion analyses of HC-HA complexes from synovial
fluids of patients with rheumatoid arthritis suggest
that they tend to form aggregates likely through HC
to HC interaction [52]. However, although HC to HA
and HC to HC interaction might crosslink separate
HA strands (Fig. 2), additional molecular interactions
involving PTX3 are required for organizing HA in a
stable gel-like ECM.

Cooperation between HCs and PTX3 in
stabilizing cumulus matrix

PTX3 is a 45-kDa protein predominantly assem-
bled in a multimeric complex of eight protomers
by interchain disulfide bonds [53]. It consists of a C-
terminal 203-amino-acid pentraxin domain, sharing
homology with the classic short pentraxins, C-
reactive protein and serum amyloid P component,
coupled to an N-terminal portion of 174 amino acids
that does not show any significant homology with
any other known protein. The expression of PTX3 is
up-regulated under inflammatory stimuli in several
cell types [54]. In the ovary, PTX8 is specifically up-
regulated in CCs following an ovulatory stimulus, in
parallel with TSG-6 and HAS2, and localizes in
the matrix [26,27]. In Ptx3 deficient mice, as well
as in bikunin- and TSG-6 null mice, cumulus ECM
formation is deeply altered and prevents oocyte
fertilization leading to female sterility. In COCs
ovulated from Ptx3 null mice, CCs appear to form a
uniform unstable mass rather than layers arranged
around a central positioned oocyte. The viscoelastic
ECM spontaneously dissolves in a short time,
quickly leading to CCs and oocyte dispersion in
the oviduct. The deletion of Pix3 does not alter HA
synthesis by CCs, neither prevents or decreases
the formation of HC-HA complexes [27]. Ptx3 null
COCs, stimulated to undergo expansion in vitro, do
not retain HA even though lal or serum is present in
the medium, but a normal phenotype can be restored
by adding recombinant human PTXS3 to the culture
medium. Recombinant N-terminal PTX3 domain
can replace full length PTX3 indicating that ECM
assembly activity is independent of the pentraxin
domain and exclusively resides in this unique
sequence of the protein, then assigning a specific
role to PTX3 in HA matrix organization. Solid binding
assays show that PTX3 does not bind to HA but
interacts with lal HCs and with TSG-6 [27,40]. Direct
interaction between PTX3 and HCs in biological
context has been documented by their co-localization
in the cumulus ECM and co-precipitation from cumulus
matrix extracts as well as by using purified molecules.
The physiological relevance of such interaction is
supported by the evidence that the HC binding site
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Fig. 2. Localization of HA, PTX3 and lal in a COC and the proposed model of interaction. In this model HA strands are
loosely organized at the periphery of the cumulus for the predominance of weak HC-HA or HC-HC interactions, while a
greater aggregation occurs in the inner layers for the abundance of PTX3 and the formation of ‘nodal’ crosslinking
generated by the HC-PTX3-HC. For HA detection, sections of ovaries collected at 10 h from an ovulatory dose of hCG
were stained with biotinylated HA binding protein and successively incubated with peroxidase-conjugated streptavidin.
Note the filamentous appearance of the HA staining extending from the outer cell layer into the follicular fluid. For PTX3
and lal detection, sections of ovaries collected at 6 h from an ovulatory dose of hCG were first incubated with biotin-labeled
rabbit antihuman PTX3 polyclonal antibody and with Alexa Fluor 488 streptavidin (green). After washing, the same
sections were probed with rabbit anti-human lal and with the secondary Cy3 goat anti-rabbit IgG (red). Note the more
intense staining for PTX3 in the corona radiata cell layer. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

resides in the PTX3 N-terminal domain, which is
required and sufficient to organize HA. Moreover, a
monoclonal antibody generated against this portion of
the molecule inhibits their interaction and neutralizes
full length recombinant hPTX3 in restoring normal
phenotype in Pix3 deficient COCs [40]. The multimeric
status of PTX3 plays a key role in defining its biological
activity. Site direct mutagenesis of cysteines involved
in the formation of disulphide bonds among the PTX3
protomers indicates that the tetrameric assembly of the
full length and the N-terminal domain is the minimum
oligomeric state required for supporting HA organiza-
tion while the dimers retain the ability to bind HC
[53,55]. This suggests that the octameric structure of
PTX3 provides at least four binding sites for this ligand.
Thus, it is likely that PTX3 might substantially
strengthen and stabilize the HA network by binding
several HCs covalently linked to distinct HA molecules,
acting as a “node” (Fig. 1). Interestingly, TSG-6 also

binds to a dimer of the N-terminal domain of PTX3
[55,56], implying that multiple TSG-6 can bind to the fulll
length PTX3 and, in principle, participate in cross
linking HA by its link domain. However, several lines of
evidence are against a structural role of TSG-6. First,
HA hexasaccharides, which compete with the binding
of TSG-6 to HA, do not inhibit ECM assembly in COC
[22,57]. Accordingly, mutants of TSG-6 link domain
showing highly reduced binding to HA, but retaining
the capacity to transfer HC to HA, do support ECM
assembly of Tsg-6 deficient COC in vitro [58]. Finally,
TSG-6-HC complexes, but not free TSG-6 molecules,
are found in the cumulus ECM up to few hours before
ovulation, indicating that almost all the TSG-6 synthe-
sized by CCs is engaged in transferring HCs to HA
[59]. On these bases, it has been proposed that the
binding of TSG-6 to PTX3 might lead to the integration
of PTX3 into the ECM at the same time and in
coordinate fashion to HCs [40]. This hypothesis found

Please cite this article as: A. Salustri, et al., Molecular organization and mechanical properties of the hyaluronan matrix surrounding
the mammalian oocyte, Matrix Biol (2017), https://doi.org/10.1016/j.matbio.2018.02.002



https://doi.org/10.1016/j.matbio.2018.02.002

6 Molecular organization and mechanical properties of the hyaluronan matrix

a strong support and further elucidation by a novel
in vitro binding assay in which PTX3, lal and TSG-6
can interact with well-defined film of HA in controlled
sequence. It was demonstrated that PTX3 can be
incorporated into the HA film only if it is pre-mixed with
lal and TSG-6 [56]. Thus, it seems that the HA
organization in the cumulus ECM is a highly orches-
trated process rather than a casual encounter of
molecules with relative binding affinity. In this regard,
we should reconsider earlier studies on the temporal
effect of serum on HA retention in COC matrix. It was,
in fact, shown that if serum is removed from the culture
during COC expansion, HA synthesized before the
removal is retained in the matrix, while that synthesized
afterwards diffuses in the medium [22]. Therefore, it
is time to speculate that HCs are associated to HA
during the process of HA elongation, before its release
from HAS2. Targeting of lal and/or its ligands in the
pericellular matrix could help in this matter. Interest-
ingly, TSG-6 can bind to adhesive molecules of the
pericellular matrix [60] and interaction with thrombos-
pondin 1 seems even to enhance the formation of
TSG-6-HC complexes [61].

Spatio-temporal regulation of versican
synthesis and its cleavage in the
preovulatory follicle

Versican belongs to the hyalectan family of
proteoglycans, so called for the ability to specifically
bind to HA through their N-terminal (G1) domain and
to lectins present in the matrix or at the cell surface
via their C-terminal (G3) domain [62]. Versican is
produced by a variety of cell types in different tissues
and localizes in the ECM as well as in the pericellular
space. It is involved in regulating cell adhesion and
migration during physiological and pathological con-
ditions, including embryo development and tumor
invasion [63]. The central domain of versican core
protein carries up to 30 chondroitin sulfate chains
conferring to the molecule large molecular size,
negative charge and hydrodynamic characteristics.
This domain comprises two subdomains, designated
glycosaminoglycan a and B (GAGa and GAGR),
which can be both present (V0) or alternatively
spliced to generate three main variants containing
the G1 domain and the GAG domain, (V1), or the
GAGa domain (V2) or neither GAG domain (V3). The
V0 and V1 represent the isoforms most ubiquitously
expressed and extensively studied. During matrix
remodeling, versican is a substrate for proteases
belonging to ADAMTS family, i.e. ADAMTSH1,
ADAMTS4 and ADAMTSS [64]. The expression,
localization and cleavage of versican show a tight
spatial and temporal regulation in the preovulatory
follicle. Early studies showed that a large dermatan
sulfate proteoglycan, later recognized as versican, is
synthesized by granulosa cells and mostly released

into the medium, suggesting that granulosa cells are
the principle producers of versican accumulating in
the follicular fluid during the formation of the antrum
[65-67]. In the follicular fluid, the concentration of
versican is high, ranging between 0,8—1 mg/ml [65,68],
and substantially contributes to the osmotic pressure
and water entrapment in the follicular cavity, preventing
the collapse of follicle and providing an appropriate
spatial and physical environment for granulosa cells and
COC [36]. Before ovulation, a spike in the expression of
both versican and ADAMATS1/ADAMTS4 proteases
occurs [23,69,70]. These proteases specifically cleave
out the G1 HA binding domain from Versican1 and,
accordingly, a fragment of about 70 kDa is detected in
the medium of hormonally-stimulated mouse granulosa
cells [23]. This is consistent with early observation
that versican in follicular fluid is unable to bind to HA [65].
The reason for versican cleavage by granulosa cells
is not clear. Likely, this is a mechanism for increasing
the colloid osmotic pressure and decreasing the
viscosity of follicular fluid in order to facilitate COC
release at ovulation. A detectable increase of versican
also occurs in COCs during expansion, but in this
follicle subpopulation versican is retained in the ECM
[69—71]. The link protein, a well-known HA binding
protein which stabilizes the binding of hyalectins to HA
and confers them resistance to enzyme degradation,
is also produced by CCs [71,72]. The aggregation
of versican to HA might contribute to the swelling of
the cumulus ECM, as suggested for other soft matrices
[63]. Co-immunolocalization studies have shown an
intense immuno-staining for both versican and HA at
the surface of CCs suggesting that they form a thick
pericellular coat [23], which in other cell types has been
shown to favor cell detachment and migration, process-
es that recent studies indicate essential for successful
expansion (see next section). ADAMTS1 and
ADAMTS4 are expressed by CCs and are activated
at the cell surface few hours before ovulation. Accord-
ingly, the 70kDa G1 fragment accumulates in the
cumulus ECM with a temporal pattern that matches
that of these enzymes [23,69]. Thus, the versican
proteolytic cleavage begins at the end of cumulus matrix
formation and increases in the ovulated COC, with ECM
disassembly and cumulus cell apoptosis [21]. The
relevance of versican degradation in cumulus ECM
dynamic cannot be studied in versican null mice, since
they die at early stages of embryogenesis. However,
involvement of versican in COC expansion might be
suggested by studies performed in ADAMTST null
mice. Versican cleavage is markedly reduced in COCs
ovulated by ADAMTS1 deficient mice, and COCs are
resistant to disaggregation, suggesting an altered ECM
remodeling [73]. This scenario resembles the events
occurring during heart development, where the spatio-
temporal expression of versican, HA and ADAMTS
allows the formation and dissolution of the cardiac jelly
required for heart wall remodeling [74—76]. Cumulus
cells also upregulate the expression of urokinase
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plasminogen activator [8], which, through plasmin
activation, could act in concert with ADAMTS to
degrade versican, as well as other structural ECM
components. Certainly, the cleavage of the G1 HA
domain from G3 lectican domain of versican breaks
the bridge between HA and adhesive proteins and
could substantially contribute to HA network desta-
bilization. Interestingly, the G1 domain fragment has
been reported to create a permissive environment
for apoptosis during limb bud development [77] and
it could have similar function in the postovulatory
COCs [21].

Cytoskeleton reorganization is required
for cumulus expansion

The deposition of cumulus ECM is accompanied
by an extensive rearrangement of actin microfila-
ments in CCs, which results in the formation of
several cytoplasmic expansions, mainly blebs of
various size and density, and a few microvilli
[5,78-81]. Membrane blebbing is dynamic and is
associated to migratory capacity in non-adhesive
environment [82,83]. Early studies with microfila-
ment disrupting agents suggested that cytoskeleton
changes are essential in the cascade of events
leading to COC expansion [84]. This hypothesis has
been confirmed and extended by recent findings
[81]. It has been shown that CCs stimulated to
undergo expansion rapidly cleave and activate
calpain 2 (or m-calpain) which is temporally associ-
ated to degradation of paxillin and talin, two integral
components of focal adhesion complexes, allowing
cell detachment and formation of bleb-like protru-
sions. Paxillin and calpain 2 co-localize at the cell
membrane, specifically at the base of cell protrusions.
Injection of a calpain inhibitor in vivo prevented the
formation of blebs, and COC expansion failed to
occur, even though HAS2 was highly expressed [81].
Moreover, inhibition of focal adhesion kinase (FAK)
phosphorylation at Tyr397, dependent on integrin
engagement, has been shown to stimulate the
expression of HAS2 and cumulus expansion in the
absence of any additional stimulus, indicating that
alternative mechanotransduction pathway can control
HAS2 expression [85].

The study of prostaglandin E, receptor subtype
2 (EP2) null mice helped in understanding the
intracellular pathway controlling cytoskeleton reor-
ganization. The genes encoding for prostaglandin
synthase-2 (Ptgs2), the rate-limiting enzyme of PG
biosynthesis, and its EP, receptor (Ptger2) are
highly expressed by CCs before ovulation [86,87].
Cumuli of Ptger2 null mice are less expanded, and
show resistance to hyaluronidase-induced disaggre-
gation and sperm penetration, albeit they contain
normal amount of HA [88,89]. The CCs show en-
hanced cortical actin polymerization, which results in

rapid recruitment and clustering of a4f, integrin on
cell membrane and an evident increased assembly
of fibronectin fibrils in the pericellular matrix. This
effect is due to enhanced activation of Ras homolog
gene family member A (RhoA) and following activation
of Rho-associated protein kinase (ROCK)/myosinli
pathway likely mediated by over-production of che-
mokines [90]. Therefore, in physiological conditions,
PGE, generated cAMP dependent signaling nega-
tively regulates RhoA activation to maintain an
appropriate pericellular matrix to allow full expansion.
In addition, maintenance of high intracellular cAMP
level inhibits the release of HA from fully expanded
COCs, stabilizing them for days. Although the
mechanisms have yet to be clarified, it seems that
RhoA/ROCK inhibition is involved also in this cAMP
action [21].

Altogether, these findings show that the formation
of the mucoelastic ECM in the COC is achieved
by the coordination between HA deposition and
cytoskeleton-mediated rearrangement of adhesive
molecules in the pericellular matrix, and cumulus cell
detachment and motility. Interestingly, an interplay
between HA and fibronectin fibrillar matrix has been
recently reported and showed to induce the myofi-
broblastic phenotype in inflammation, possibly by
altering ECM swelling pressure, stiffness or viscosity
[91].

Tenascin C (TNC), a hexameric matrix glycopro-
tein which modulates cellular functions during tissue
remodeling, is also strongly upregulated in the
mouse COC approaching ovulation, and localizes
to specific regions of the cumulus cell surface [92].
The function of this protein in the context of cumulus
ECM organization has not been investigated yet,
although it could have a relevant role. In the human
cumulus, TNC and fibronectin are differently ex-
pressed, with the former mostly present in the
innermost layer of cells and the latter associated to
the cells scattered in the cumulus mass [80,93]. TNC
is well known to inhibit fibronectin-mediated adhe-
sion by binding to fibronectin and preventing its
binding to the proteoglycan syndecan 4 [94,95].
Noteworthy, the expression of syndecan 4 by CCs
parallels that of TNC [20].

Ultrastructural analysis of ovulated COCs suggests
that the HA-protein network is attached to cytoplasmic
projections of CCs [5]. However, the relevance of direct
binding of HA to specific receptors is still unclear. The
major HA receptors CD44 and RHAMM (Receptor
of HA Mediated Mobility) are expressed by cumulus
cells [92,96-98] and could elicit multiple intracellular
signals leading to anchorage-independent cell growth
[99,100]. Nevertheless, CD44 deficient mice have
normal fertility [101,102] and deletion of the RHAMM
gene produces hypofertility [103], which, however, has
been recently associated to altered proliferation of
granulosa cells rather than cumulus ECM alteration
and oocyte fertilization failure [104].
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Impact of ECM organization on
cumulus function

Several lines of evidence indicate that molecules
synthesized by the CCs and/or the oocyte attract
the sperm [105,106]. Therefore, it is intuitive that the
central position of the oocyte and the higher cumulus
cell density around the germ cell are essential
prerequisites for creating a chemoattractant gradi-
ent. Regional difference in COC HA organization
seems to play an important role in this cell spatial
distribution. HA staining of ovarian sections with
a specific probe clearly shows that HA is present
throughout the COC matrix, but it forms filaments at
the periphery, extending into the follicular fluid, while,
it shows a more compact structure between the inner
layers [19]. Differences in relative concentrations
of PTX3, HCs and TSG-6 throughout the cumulus
could account, at least in part, for such peculiar HA
organization. It has been shown that PTX3 deposi-
tion is spatiotemporal regulated in the COC with the
most precocious and abundant accumulation in the
matrix among corona radiata cells, while the HCs
appeared more uniformly distributed throughout the
cumulus mass [40] (Fig. 1). Likely, this depends by
the fact that PTX3 is exclusively produced by the
CCs under oocyte influence [26,27], while TSG-6,
which catalyzes the HC transfer from lal to HA, is
expressed by cumulus as well as mural granulosa
cells [26,39,46], and the latter release TSG-6 in the
follicular fluid [39,107,108] Thus, it is reasonable to
hypothesize that at the periphery of the cumulus, HA
strands are loosely organized for the predominance
of weak HC-HA or HC-HC interactions while a
greater aggregation occurs in the inner layers for
the abundance of PTX3 and the formation of “nodal”
crosslinking generated by the HC-PTX3-HC. In
agreement, in TSG-6 and bikunin null mice, that
cannot form either types of interactions (HC-HC and
HC-PTX3-HC), CCs mostly disaggregate within the
follicle deeply impairing ovulation [24]. Conversely,
in PTX3 null mice ovulation occurs normally because
a matrix is formed, although loose and unstable,
and corona radiata cells are disorganized and the
oocytes randomly located in the cumulus mass, a
condition sufficient for preventing fertilization by the
sperm [27].

Mechanical analyses by colloidal-probe atomic
force microscopy confirmed that the cumulus ECM is
effectively a hydrogel stably cross-linked throughout
[109]. It also revealed that its mechanical properties
are heterogeneous, in agreement with the hypothe-
sized regional difference in the HA cross-linking. The
most outer layer displayed a unique combination of
elasticity and extreme softness below 1 Pa, which is
2-3 order of magnitude smaller than in the inner
layer, as indicated by a quantitative stretch analyses
of COC in rabbit [110]. The estimated mesh size
formed by the HA network is in the order of a few

hundred of nanometers suggesting that physical
constraints are probably of minor importance for
the distribution of signaling molecules through the
cumulus ECM [109]. Therefore, heterogeneities in
matrix composition in different regions of the COC
might also serve to establish an immobilized gradient
of factors affecting sperm maturation and mobility
during its progression toward the egg.

In the oviduct, only vigorously moving sperm can
enter the cumulus mass. The surface of the cumulus
appeared to be quite resistant to spermatozoa entry
and then penetration is slowly completed [111]. Once
inside, the sperm continues to move, alternating
between turning and swimming straight ahead,
a progression typical of chemoattractant response.
Electron microscopy analyses show an intimate
association of the ECM with the head and tail plasma
membrane [5]. No obvious degradation of the ECM is
observed and fertility of male mice deficient for Sperm
Adhesion Molecule 1 and hyaluronidase 5, two
hyaluronidases acting at neutral pH, questioned the
relevance of HA degradation in sperm penetration of
the cumulus [112]. However, recent findings suggest
that a limited and localized digestion of HA may occur
during sperm swimming through the action of acid-
active hyaluronidase 2 and its coactivator CD44
present on the sperm surface [113], similarly to what
reported for tumor cells [114]. Indeed, it has been
shown that low molecular weight HA can activate the
Toll-like receptor 2 and 4 on CCs and induce the
production of chemokines that increase sperm motility
and fertilization [115]. In addition, sperm is able to
respond to rheological changes of the environment, for
example sensing and swimming against the oviductal
fluid flow for reaching the ampulla[116,117]. Therefore,
mechanically gated channels activated by forces
imposed on the plasma membrane by local viscoelas-
ticity of the COC matrix could contribute to control the
flagellar bending and consequently the swimming
mode.

In conclusion, the combined action of multiple
factors, including local HA degradation, chemo-
attractant gradients and mechanosensory modula-
tion, may contribute to determine the behavior of
the sperm in the cumulus ECM in order to achieve
oocyte fertilization.

New vision and perspectives

The studies conducted in the last 20 years have
made great progress in understanding the biochem-
ical and rheological characteristics of the cumulus
matrix. However, information on its molecular com-
position is still fragmentary and a systematic study
of the expression of matrix molecules is essential to
fully understand its function. It is now well estab-
lished that spermatozoa cannot find the egg in the
oviduct without the help of the cumulus oophorus.

Please cite this article as: A. Salustri, et al., Molecular organization and mechanical properties of the hyaluronan matrix surrounding
the mammalian oocyte, Matrix Biol (2017), https://doi.org/10.1016/j.matbio.2018.02.002



https://doi.org/10.1016/j.matbio.2018.02.002

Molecular organization and mechanical properties of the hyaluronan matrix 9

However, for doing this, they must have acquired all
the molecular machinery necessary to respond to
biochemical and mechanical signals that allow them
efficiently cross the matrix and reach the oocyte. The
evidence that the essential components so far iden-
tified in the mouse cumulus ECM, such as PTX3
and lal-HCs, are also present in the human cumulus
ECM makes these studies relevant for clinical pur-
poses. Male infertility is increasing in the population
and any efforts have to be made to develop more
efficient technique to select gold sperm in programs
of assisted reproduction technology. The multiple
interactions reported in this review between the
spermatozoa and the cumulus suggest the possibility
that biomimetic HA gel functionalized with structural
and biochemical components of the cumulus matrix
could constitute an innovative method for sperm
selection, mimicking the physiological conditions.
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