Evidence shows that there is a synergistic, bidirectional association between cancer and aging with many shared traits. Age itself is a risk factor for the onset of most cancers, while evidence suggests that cancer and its treatments might accelerate aging by causing genotoxic and cytotoxic insults. Aging has been associated with a series of alterations that can be linked to cancer: i) genomic instability caused by DNA damage or epigenetic alterations coupled with repair errors, which lead to progressive accumulation of mutations; ii) telomere attrition with possible impairment of telomerase, shelterin complex, or the trimeric complex (Cdc13, Stn1 and Ten1-CST) activities associated with abnormalities in DNA replication and repair; iii) altered proteostasis, especially when leading to an augmented proteasome, chaperon and autophagy-lysosome activity; iv) mitochondrial dysfunction causing oxidative stress; v) cellular senescence; vi) stem cells exhaustion, intercellular altered communication and deregulated nutrient sensing which are associated with microenvironmental modifications which may facilitate the subsequential role of cancer stem cells. Nowadays, anti-growth factor agents and epigenetic therapies seem to assume an increasing role in fighting aging-related diseases, especially cancer. This report aims to discuss the impact of age on cancer growth.

Characteristic Hallmarks of Aging and the Impact on Carcinogenesis

Ralli, Massimo;
2023-01-01

Abstract

Evidence shows that there is a synergistic, bidirectional association between cancer and aging with many shared traits. Age itself is a risk factor for the onset of most cancers, while evidence suggests that cancer and its treatments might accelerate aging by causing genotoxic and cytotoxic insults. Aging has been associated with a series of alterations that can be linked to cancer: i) genomic instability caused by DNA damage or epigenetic alterations coupled with repair errors, which lead to progressive accumulation of mutations; ii) telomere attrition with possible impairment of telomerase, shelterin complex, or the trimeric complex (Cdc13, Stn1 and Ten1-CST) activities associated with abnormalities in DNA replication and repair; iii) altered proteostasis, especially when leading to an augmented proteasome, chaperon and autophagy-lysosome activity; iv) mitochondrial dysfunction causing oxidative stress; v) cellular senescence; vi) stem cells exhaustion, intercellular altered communication and deregulated nutrient sensing which are associated with microenvironmental modifications which may facilitate the subsequential role of cancer stem cells. Nowadays, anti-growth factor agents and epigenetic therapies seem to assume an increasing role in fighting aging-related diseases, especially cancer. This report aims to discuss the impact of age on cancer growth.
2023
Aging
cancer
epigenetic
genomic instability
microenvironment
oxidative stress
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/10271
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
social impact