We have established a new chimeric human-mouse model of myasthenia gravis in severe combined immunodeficiency mice, using human peripheral blood lymphocytes that survive in the mouse and produce specific antibodies that mediate pathological changes typical of human myasthenia gravis. Mice given peripheral blood lymphocytes from both anti-acetylcholine receptor (AChR) antibody-positive and -negative patients with myasthenia gravis showed circulating anti-acetylcholine receptor antibodies, deposition of human IgG at muscle end-plates, and simplification of the postsynaptic membrane, findings characteristic of human myasthenia gravis. Mice given human peripheral blood lymphocytes from healthy donors and simultaneously immunized with Torpedo acetylcholine receptor showed the same changes. This chimeric model, utilizing human cells to reproduce the immunopathological findings of human myasthenia gravis in a nonhuman environment, offers new opportunities to study immune regulation in autoimmunity.

The human-severe combined immunodeficiency myasthenic mouse model: A new approach for the study of myasthenia gravis

Grimaldi, Luigi
1993-01-01

Abstract

We have established a new chimeric human-mouse model of myasthenia gravis in severe combined immunodeficiency mice, using human peripheral blood lymphocytes that survive in the mouse and produce specific antibodies that mediate pathological changes typical of human myasthenia gravis. Mice given peripheral blood lymphocytes from both anti-acetylcholine receptor (AChR) antibody-positive and -negative patients with myasthenia gravis showed circulating anti-acetylcholine receptor antibodies, deposition of human IgG at muscle end-plates, and simplification of the postsynaptic membrane, findings characteristic of human myasthenia gravis. Mice given human peripheral blood lymphocytes from healthy donors and simultaneously immunized with Torpedo acetylcholine receptor showed the same changes. This chimeric model, utilizing human cells to reproduce the immunopathological findings of human myasthenia gravis in a nonhuman environment, offers new opportunities to study immune regulation in autoimmunity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/12616
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
social impact