Platelet-rich plasma (PRP) therapy is increasingly recognized as a promising treatment for musculoskeletal disorders, including osteoarthritis (OA), tendinopathy, and muscle injuries. This narrative review synthesizes the current literature to evaluate the efficacy of PRP, with a focus on platelet dosing strategies, leukocyte composition, and preparation protocols. Evidence suggests that optimal therapeutic outcomes are achieved when platelet doses exceed 3.5 billion per injection, with cumulative doses of 10–12 billion across multiple treatments. In intra-articular applications, leukocyte-poor PRP (LP-PRP), characterized by reduced neutrophil content, demonstrates superior efficacy compared to leukocyte-rich PRP (LR-PRP). However, its effectiveness in tendon and muscle regeneration remains a subject of debate. Preliminary data suggest that the inclusion of peripheral blood mononuclear cells (PBMNCs) may enhance PRP efficacy, though robust clinical trials are required to confirm these findings. Furthermore, red blood cell contamination and pre-activation have been identified as detrimental to PRP effectiveness, highlighting the need for standardized preparation protocols. This review emphasizes the importance of tailoring PRP formulations to patient-specific factors and musculoskeletal conditions. Future research should focus on refining PRP preparation techniques, identifying optimal leukocyte compositions, and establishing standardized guidelines to enhance clinical outcomes. © 2025 by the authors.

Re-Evaluating Platelet-Rich Plasma Dosing Strategies in Sports Medicine: The Role of the “10 Billion Platelet Dose” in Optimizing Therapeutic Outcomes—A Narrative Review

Palermi, Stefano
;
2025-01-01

Abstract

Platelet-rich plasma (PRP) therapy is increasingly recognized as a promising treatment for musculoskeletal disorders, including osteoarthritis (OA), tendinopathy, and muscle injuries. This narrative review synthesizes the current literature to evaluate the efficacy of PRP, with a focus on platelet dosing strategies, leukocyte composition, and preparation protocols. Evidence suggests that optimal therapeutic outcomes are achieved when platelet doses exceed 3.5 billion per injection, with cumulative doses of 10–12 billion across multiple treatments. In intra-articular applications, leukocyte-poor PRP (LP-PRP), characterized by reduced neutrophil content, demonstrates superior efficacy compared to leukocyte-rich PRP (LR-PRP). However, its effectiveness in tendon and muscle regeneration remains a subject of debate. Preliminary data suggest that the inclusion of peripheral blood mononuclear cells (PBMNCs) may enhance PRP efficacy, though robust clinical trials are required to confirm these findings. Furthermore, red blood cell contamination and pre-activation have been identified as detrimental to PRP effectiveness, highlighting the need for standardized preparation protocols. This review emphasizes the importance of tailoring PRP formulations to patient-specific factors and musculoskeletal conditions. Future research should focus on refining PRP preparation techniques, identifying optimal leukocyte compositions, and establishing standardized guidelines to enhance clinical outcomes. © 2025 by the authors.
2025
Orthobiologic
Platelet dose
Platelet-rich plasma
Sport medicine
File in questo prodotto:
File Dimensione Formato  
PRP corsini 2025.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 305.36 kB
Formato Adobe PDF
305.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/14073
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact