To test in vitro and in vivo the wear performance of diamond-coated strips by means of tribological testing and scanning electronic microscope (SEM).

OBJECTIVE: To test in vitro and in vivo the wear performance of diamond-coated strips by means of tribological testing and scanning electronic microscope (SEM). MATERIALS AND METHODS: To evaluate the in vitro wear performance, a tribological test was performed by a standard tribometer. The abrasive strips slid against stationary, freshly extracted premolars fixed in resin blocks, at a 2-newton load. At the end of the tribological test, the residual surface of the strip was observed by means of SEM analysis, which was performed every 50 meters until reaching 300 meters. For the in vivo analysis, the strip was used for 300 seconds, corresponding to 250 meters. RESULTS: The strips presented a fenestrated structure characterized by diamond granules alternating with voids. After the first 50 meters, it was possible to observe tooth material deposited on the surface of the strips and a certain number of abrasive grains detached. The surface of the strip after 250 meters appeared smoother and therefore less effective in its abrasive power. After 300 seconds of in vivo utilization of the strip, it was possible to observe the detachment of diamond abrasive grains, the near absence of the grains and, therefore, loss of abrasive power. CONCLUSIONS: Under ideal conditions, after 5 minutes (30 meters) of use, the strip loses its abrasive capacity by about 60%. In vivo, a more rapid loss of abrasive power was observed due to the greater load applied by the clinician in forcing the strip into the contact point.

In vitro and in vivo evaluation of diamond-coated strips

Lione, Roberta;Gazzani, Francesca;Pavoni, Chiara;Cozza, Paola
2017-01-01

Abstract

OBJECTIVE: To test in vitro and in vivo the wear performance of diamond-coated strips by means of tribological testing and scanning electronic microscope (SEM). MATERIALS AND METHODS: To evaluate the in vitro wear performance, a tribological test was performed by a standard tribometer. The abrasive strips slid against stationary, freshly extracted premolars fixed in resin blocks, at a 2-newton load. At the end of the tribological test, the residual surface of the strip was observed by means of SEM analysis, which was performed every 50 meters until reaching 300 meters. For the in vivo analysis, the strip was used for 300 seconds, corresponding to 250 meters. RESULTS: The strips presented a fenestrated structure characterized by diamond granules alternating with voids. After the first 50 meters, it was possible to observe tooth material deposited on the surface of the strips and a certain number of abrasive grains detached. The surface of the strip after 250 meters appeared smoother and therefore less effective in its abrasive power. After 300 seconds of in vivo utilization of the strip, it was possible to observe the detachment of diamond abrasive grains, the near absence of the grains and, therefore, loss of abrasive power. CONCLUSIONS: Under ideal conditions, after 5 minutes (30 meters) of use, the strip loses its abrasive capacity by about 60%. In vivo, a more rapid loss of abrasive power was observed due to the greater load applied by the clinician in forcing the strip into the contact point.
2017
To test in vitro and in vivo the wear performance of diamond-coated strips by means of tribological testing and scanning electronic microscope (SEM).
Diamond coated strip
Interproximal enamel reduction
SEM
File in questo prodotto:
File Dimensione Formato  
Lione strip.pdf

non disponibili

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 599.87 kB
Formato Adobe PDF
599.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/1456
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
social impact