Skeletal muscle is composed of different myofiber types that preferentially use glucose or lipids for ATP production. How fuel preference is regulated in these post-mitotic cells is largely unknown, making this issue a key question in the fields of muscle and whole-body metabolism. Here, we show that microRNAs (miRNAs) play a role in defining myofiber metabolic profiles. mRNA and miRNA signatures of all myofiber types obtained at the single-cell level unveiled fiber-specific regulatory networks and identified two master miRNAs that coordinately control myofiber fuel preference and mitochondrial morphology. Our work provides a complete and integrated mouse myofiber type-specific catalog of gene and miRNA expression and establishes miR-27a-3p and miR-142-3p as regulators of lipid use in skeletal muscle.

Transcriptomic Analysis of Single Isolated Myofibers Identifies miR-27a-3p and miR-142-3p as Regulators of Metabolism in Skeletal Muscle

Bean, Camilla;
2019-01-01

Abstract

Skeletal muscle is composed of different myofiber types that preferentially use glucose or lipids for ATP production. How fuel preference is regulated in these post-mitotic cells is largely unknown, making this issue a key question in the fields of muscle and whole-body metabolism. Here, we show that microRNAs (miRNAs) play a role in defining myofiber metabolic profiles. mRNA and miRNA signatures of all myofiber types obtained at the single-cell level unveiled fiber-specific regulatory networks and identified two master miRNAs that coordinately control myofiber fuel preference and mitochondrial morphology. Our work provides a complete and integrated mouse myofiber type-specific catalog of gene and miRNA expression and establishes miR-27a-3p and miR-142-3p as regulators of lipid use in skeletal muscle.
2019
lipids
miRNAs
mitochondria
single myofiber
skeletal muscle metabolism
Animals
Cell Line
Cells
Cultured
Gene Regulatory Networks
Glycogen
Glycolysis
Humans
Lipid Metabolism
Male
Mice
Mice
Inbred C57BL
MicroRNAs
Mitochondria
Muscle
Muscle Fibers
Skeletal
Oxidative Phosphorylation
Transcriptome
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/14971
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
social impact