In this work, we describe the application of the Zernike formalism to quantitatively characterize the binding pockets of two sets of biologically relevant systems. Such an approach, when applied to molecular dynamics trajectories, is able to pinpoint the subtle differences between very similar molecular regions and their impact on the local propensity to ligand binding, allowing us to quantify such differences. The statistical robustness of our procedure suggests that it is very suitable to describe protein binding sites and protein-ligand interactions within a rigorous and well-defined framework.

Quantitative characterization of binding pockets and binding complementarity by means of Zernike descriptors

Di Rienzo, Lorenzo;
2020-01-01

Abstract

In this work, we describe the application of the Zernike formalism to quantitatively characterize the binding pockets of two sets of biologically relevant systems. Such an approach, when applied to molecular dynamics trajectories, is able to pinpoint the subtle differences between very similar molecular regions and their impact on the local propensity to ligand binding, allowing us to quantify such differences. The statistical robustness of our procedure suggests that it is very suitable to describe protein binding sites and protein-ligand interactions within a rigorous and well-defined framework.
2020
Zernike
molecular dynamics
kinase
MHC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/15180
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
social impact