Background: In a restricted subset of HIV patients with suppressed viral load (i.e., pol-undetected HIV-RNA), the Aptima HIV-1 Quant Dx Assay (Aptima), a dual-target (pol and LTR) and dual-probe test for viral load (VL) monitoring, can detect HIV-RNA exclusively through amplification of the LTR region. Objectives: To analyze the virological characteristics of the HIV-RNA elements detected only through LTR amplification (LTR-e). Study design: LTR-e isolated from plasma and peripheral blood mononuclear cells (PBMC) were evaluated for their ability to trigger productive infections. Viral pellets morphology and ultrastructural characteristics of PBMC from LTR-e patients were examined by electron microscopy. Plasma LTR-e underwent Sanger sequencing. Exosomes were examined with Aptima for LTR-e content. Results: In-vitro, LTR-e could not infect PBMC, induce cytopathic effects, or cause syncytia, even at high VL (e.g., >10,000 copies/mL). Under the electron microscope, plasma pellets and PBMC from patients with LTR-e showed atypical vesicles. Sanger sequencing of LTR-e yielded no results. Moreover, in plasma samples, LTR-e were associated with cell debris, never with exosomes. Conclusions: Differently from other dual-target but single-probe assays, Aptima unveils VL based only on LTR amplification in some HIV patients. Here, we show that LTR-e represent partial/incomplete/non-canonical transcripts unable to trigger productive infection or transmit HIV-1 infection. The recognition of VL based only on LTR-e in infected individuals is crucial as it allows to avoid inappropriate decisions in the clinical management of HIV patients, such as retesting of VL and switching of ART. Physicians and HIV-RNA dual-target assay manufacturers should consider the important implications of not recognizing this singular type of VL.
Virological characterization of HIV-1 RNA elements detected exclusively through the LTR region by the dual-target Aptima HIV-1 Quant Dx assay in a subset of positive patients
Nardacci, Roberta;
2023-01-01
Abstract
Background: In a restricted subset of HIV patients with suppressed viral load (i.e., pol-undetected HIV-RNA), the Aptima HIV-1 Quant Dx Assay (Aptima), a dual-target (pol and LTR) and dual-probe test for viral load (VL) monitoring, can detect HIV-RNA exclusively through amplification of the LTR region. Objectives: To analyze the virological characteristics of the HIV-RNA elements detected only through LTR amplification (LTR-e). Study design: LTR-e isolated from plasma and peripheral blood mononuclear cells (PBMC) were evaluated for their ability to trigger productive infections. Viral pellets morphology and ultrastructural characteristics of PBMC from LTR-e patients were examined by electron microscopy. Plasma LTR-e underwent Sanger sequencing. Exosomes were examined with Aptima for LTR-e content. Results: In-vitro, LTR-e could not infect PBMC, induce cytopathic effects, or cause syncytia, even at high VL (e.g., >10,000 copies/mL). Under the electron microscope, plasma pellets and PBMC from patients with LTR-e showed atypical vesicles. Sanger sequencing of LTR-e yielded no results. Moreover, in plasma samples, LTR-e were associated with cell debris, never with exosomes. Conclusions: Differently from other dual-target but single-probe assays, Aptima unveils VL based only on LTR amplification in some HIV patients. Here, we show that LTR-e represent partial/incomplete/non-canonical transcripts unable to trigger productive infection or transmit HIV-1 infection. The recognition of VL based only on LTR-e in infected individuals is crucial as it allows to avoid inappropriate decisions in the clinical management of HIV patients, such as retesting of VL and switching of ART. Physicians and HIV-RNA dual-target assay manufacturers should consider the important implications of not recognizing this singular type of VL.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1386653223001981-main.pdf
non disponibili
Dimensione
4.72 MB
Formato
Adobe PDF
|
4.72 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.