Inflammatory lung disease is a primary cause of morbidity and mortality in cystic fibrosis (CF). Mechanisms of unresolved acute inflammation in CF are not completely known, although the involvement of cystic fibrosis transmembrane conductance regulator (CFTR) in nonrespiratory cells is emerging. Here we examined CFTR expression and function in human platelets (PLTs) and found that they express a biologically active CFTR. CFTR blockade gave an ~ 50 % reduction in lipoxin A4 (LXA4) formation during PLT/polymorphonuclear leukocytes (PMN) coincubations by inhibiting the lipoxin synthase activity of PLT 12-lipoxygenase. PLTs from CF patients generated ~ 40% less LXA4 compared to healthy subject PLTs. CFTR inhibition increased PLT-dependent PMN viability (33.0 ± 5.7 % vs 61.2 ± 8.2 % (P = 0.033), suppressed nitric oxide generation (0.23 ± 0.04 vs 0.11 ± 0.002 pmoles/108 platelets; P = 0.004), while reducing AKT (1.02 ± 0.12 vs 0.71 ± 0.007 units; P = 0.04), and increasing p38 MAPK phosphorylation (0.650 ± 0.09 vs 1.04 ± 0.24 units; P = 0.03). Taken together, these findings indicate that PLTs from CF patients are affected by the molecular defect of CFTR. Moreover, this CF PLT abnormality may explain the failure of resolution in CF.

Cystic fibrosis transmembrane conductance regulator (CFTR) expression in human platelets: Impact on mediators and mechanisms of the inflammatory response

PIERONI, LUISA;
2010-01-01

Abstract

Inflammatory lung disease is a primary cause of morbidity and mortality in cystic fibrosis (CF). Mechanisms of unresolved acute inflammation in CF are not completely known, although the involvement of cystic fibrosis transmembrane conductance regulator (CFTR) in nonrespiratory cells is emerging. Here we examined CFTR expression and function in human platelets (PLTs) and found that they express a biologically active CFTR. CFTR blockade gave an ~ 50 % reduction in lipoxin A4 (LXA4) formation during PLT/polymorphonuclear leukocytes (PMN) coincubations by inhibiting the lipoxin synthase activity of PLT 12-lipoxygenase. PLTs from CF patients generated ~ 40% less LXA4 compared to healthy subject PLTs. CFTR inhibition increased PLT-dependent PMN viability (33.0 ± 5.7 % vs 61.2 ± 8.2 % (P = 0.033), suppressed nitric oxide generation (0.23 ± 0.04 vs 0.11 ± 0.002 pmoles/108 platelets; P = 0.004), while reducing AKT (1.02 ± 0.12 vs 0.71 ± 0.007 units; P = 0.04), and increasing p38 MAPK phosphorylation (0.650 ± 0.09 vs 1.04 ± 0.24 units; P = 0.03). Taken together, these findings indicate that PLTs from CF patients are affected by the molecular defect of CFTR. Moreover, this CF PLT abnormality may explain the failure of resolution in CF.
2010
NITRIC-OXIDE PRODUCTION
P-SELECTIN
CELLS
NEUTROPHILS
ACTIVATION
12-LIPOXYGENASE
MACROPHAGES
INHIBITION
SECRETION
AIRWAY
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/4311
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
social impact