Objectives: To set up a novel simple, sensitive, and reliable ion-pairing HPLC method for the synchronous separation of several purines, pyrimidines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis and screening of inborn errors of metabolism (IEM). Design and methods: The separation was set up using a Hypersil C-18, 5-mu m particle size, 250 x 4.6 mm column, and a step gradient using two buffers and tetrabutylammonium hydroxide as the pairing reagent. A highly sensitive diode array UV detector was set up at a wavelength between 200 and 300 nm that revealed purines and pyrimidines at 260 nm and other compounds at 206 nm. Results: Compounds were determined in the plasma of 15 healthy adults, in the urine of 50 healthy subjects (1-3 years, 4-6 years, 8-10 years, 12-18 years, 25-35 years), and in 10 non-pathological amniotic fluid samples. To assess the validity of the chemical diagnosis of IEM, plasma and urine samples were analyzed in patients affected by Canavan disease (n = 10; mean age 4.6 +/- 2.3). Low plasma levels of N-acetylaspartate (16.96 +/- 19.57 mu mol/L plasma; not detectable in healthy adults) and dramatically high urinary N-acetylaspartate concentrations (1872.03 +/- 631.86 mu mol/mmol creatinine; 450 times higher than that which was observed in age-matched controls) were recorded. Neither N-acetylglutamate nor N-acetylaspartylglutamate could be detected in the plasma or urine of controls or patients with Canavan disease. Conclusions: The results demonstrate the suitability of the present ion-pairing HPLC separation with UV detection of cytosine, cytidine, creatinine, uracil, uridine, beta-pseudouridine, adenine, 3-methyladenine, hypoxanthine, xanthine, xanthosine, inosine, guanosine, ascorbic acid, thymine, thymidine, uric acid, 1-methyluric acid, orotic acid, N-acetylaspartate, N-acetylglutamate, N-acetylaspartylglutamate, malonic acid, methylmalonic acid, GSH, and GSSG as a reliable method for the prenatal and neonatal chemical diagnosis and screening of IEM using biological fluids.

Simultaneous high performance liquid chromatographic separation of purines, pyrimidines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis of inborn errors of metabolism

TAVAZZI B;
2005-01-01

Abstract

Objectives: To set up a novel simple, sensitive, and reliable ion-pairing HPLC method for the synchronous separation of several purines, pyrimidines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis and screening of inborn errors of metabolism (IEM). Design and methods: The separation was set up using a Hypersil C-18, 5-mu m particle size, 250 x 4.6 mm column, and a step gradient using two buffers and tetrabutylammonium hydroxide as the pairing reagent. A highly sensitive diode array UV detector was set up at a wavelength between 200 and 300 nm that revealed purines and pyrimidines at 260 nm and other compounds at 206 nm. Results: Compounds were determined in the plasma of 15 healthy adults, in the urine of 50 healthy subjects (1-3 years, 4-6 years, 8-10 years, 12-18 years, 25-35 years), and in 10 non-pathological amniotic fluid samples. To assess the validity of the chemical diagnosis of IEM, plasma and urine samples were analyzed in patients affected by Canavan disease (n = 10; mean age 4.6 +/- 2.3). Low plasma levels of N-acetylaspartate (16.96 +/- 19.57 mu mol/L plasma; not detectable in healthy adults) and dramatically high urinary N-acetylaspartate concentrations (1872.03 +/- 631.86 mu mol/mmol creatinine; 450 times higher than that which was observed in age-matched controls) were recorded. Neither N-acetylglutamate nor N-acetylaspartylglutamate could be detected in the plasma or urine of controls or patients with Canavan disease. Conclusions: The results demonstrate the suitability of the present ion-pairing HPLC separation with UV detection of cytosine, cytidine, creatinine, uracil, uridine, beta-pseudouridine, adenine, 3-methyladenine, hypoxanthine, xanthine, xanthosine, inosine, guanosine, ascorbic acid, thymine, thymidine, uric acid, 1-methyluric acid, orotic acid, N-acetylaspartate, N-acetylglutamate, N-acetylaspartylglutamate, malonic acid, methylmalonic acid, GSH, and GSSG as a reliable method for the prenatal and neonatal chemical diagnosis and screening of IEM using biological fluids.
2005
Purines
Pyrimidines
Metabolism
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/4504
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact