Despite the key role of magnesium in many fundamental biological processes, knowledge about its intracellular regulation is still scarce, due to the lack of appropriate detection methods. Here, we report the spectroscopic and photochemical characterization of two diaza-18-crown-6 hydroxyquinoline derivatives (DCHQ) and we propose their application in total Mg(2+) assessment and in confocal imaging as effective Mg(2+) indicators. DCHQ derivatives 1 and 2 bind Mg(2+) with much higher affinity than other available probes (K(d) = 44 and 73 microM, respectively) and show a strong fluorescence increase upon binding. Remarkably, fluorescence output is not significantly affected by other divalent cations, most importantly Ca(2+), or by pH changes within the physiological range. Evidence is provided on the use of fluorometric data to derive total cellular Mg(2+) content, which is consistent with atomic absorption data. Furthermore, we show that DCHQ compounds can be effectively employed to map intracellular ion distribution and movements in live cells by confocal microscopy. A clear staining pattern consistent with known affinities of Mg(2+) for biological ligands is shown; moreover, changes in the fluorescence signal could be tracked following stimuli known to modify intracellular Mg(2+) concentration. These findings suggest that DCHQ derivatives may serve as new tools for the study of Mg(2+) regulation, allowing sensitive and straightforward detection of both static and dynamic signals.

8-Hydroxyquinoline Derivatives as Fluorescent Sensors for Magnesium in Living Cells

Trapani Valentina;Wolf, Federica
2006-01-01

Abstract

Despite the key role of magnesium in many fundamental biological processes, knowledge about its intracellular regulation is still scarce, due to the lack of appropriate detection methods. Here, we report the spectroscopic and photochemical characterization of two diaza-18-crown-6 hydroxyquinoline derivatives (DCHQ) and we propose their application in total Mg(2+) assessment and in confocal imaging as effective Mg(2+) indicators. DCHQ derivatives 1 and 2 bind Mg(2+) with much higher affinity than other available probes (K(d) = 44 and 73 microM, respectively) and show a strong fluorescence increase upon binding. Remarkably, fluorescence output is not significantly affected by other divalent cations, most importantly Ca(2+), or by pH changes within the physiological range. Evidence is provided on the use of fluorometric data to derive total cellular Mg(2+) content, which is consistent with atomic absorption data. Furthermore, we show that DCHQ compounds can be effectively employed to map intracellular ion distribution and movements in live cells by confocal microscopy. A clear staining pattern consistent with known affinities of Mg(2+) for biological ligands is shown; moreover, changes in the fluorescence signal could be tracked following stimuli known to modify intracellular Mg(2+) concentration. These findings suggest that DCHQ derivatives may serve as new tools for the study of Mg(2+) regulation, allowing sensitive and straightforward detection of both static and dynamic signals.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/4810
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 286
social impact