The recent advent of nanomedicine holds potential to revolutionize cancer therapy. This innovative discipline has paved the way for the emergence of a new class of drugs based on nanoengineered particles. These "nanodrugs" are designed to greatly enhance drug therapeutic indices. First-generation nanodrugs consisted of conventional anti-cancer drugs loaded into/onto nanoengineered particles (nanocarriers) devoid of targeting features (non-targeted nanodrugs). Non-targeted nanodrugs have provided the opportunity to carry large amounts of drugs, including poorly water-soluble and/or permeable drugs, to several types of tumors, improving the therapeutic index with respect to comparable free drugs. Although effective, the primary delivery mechanism of non-targeted nanodrugs was through passive tissue accumulation, due to pathophysiological differences between tumor-associated and healthy vessels, and through non-specific targeting of cell subsets, posing the danger of off-target binding and effects. Recently, the therapeutic indices of certain anti-cancer drugs were further improved by attaching targeting ligands to nanodrugs (targeted-nanodrugs). Targeted-nanodrugs selectively bind to cognate receptors expressed on target cells and enter cells more efficiently than non-targeted formulations. Although these advancements have been sufficiently beneficial to place targeted-nanodrugs into clinical development for use in cancer therapy, they also come at a price. The addition of ligands to drug-loaded nanocarriers often leads to additional synthesis steps and costs, and more complex biological performance relative to ligand-devoid nanodrugs. Here, we will discuss the benefits and challenges facing the addition of targeting features to nanodrugs for cancer therapy.

Targeted nanodrugs for cancer therapy: prospects and challenges

PIETROIUSTI, ANTONIO;
2014-01-01

Abstract

The recent advent of nanomedicine holds potential to revolutionize cancer therapy. This innovative discipline has paved the way for the emergence of a new class of drugs based on nanoengineered particles. These "nanodrugs" are designed to greatly enhance drug therapeutic indices. First-generation nanodrugs consisted of conventional anti-cancer drugs loaded into/onto nanoengineered particles (nanocarriers) devoid of targeting features (non-targeted nanodrugs). Non-targeted nanodrugs have provided the opportunity to carry large amounts of drugs, including poorly water-soluble and/or permeable drugs, to several types of tumors, improving the therapeutic index with respect to comparable free drugs. Although effective, the primary delivery mechanism of non-targeted nanodrugs was through passive tissue accumulation, due to pathophysiological differences between tumor-associated and healthy vessels, and through non-specific targeting of cell subsets, posing the danger of off-target binding and effects. Recently, the therapeutic indices of certain anti-cancer drugs were further improved by attaching targeting ligands to nanodrugs (targeted-nanodrugs). Targeted-nanodrugs selectively bind to cognate receptors expressed on target cells and enter cells more efficiently than non-targeted formulations. Although these advancements have been sufficiently beneficial to place targeted-nanodrugs into clinical development for use in cancer therapy, they also come at a price. The addition of ligands to drug-loaded nanocarriers often leads to additional synthesis steps and costs, and more complex biological performance relative to ligand-devoid nanodrugs. Here, we will discuss the benefits and challenges facing the addition of targeting features to nanodrugs for cancer therapy.
2014
Animals
Neoplasms
Antineoplastic Agents
Humans
Molecular Targeted Therapy
Nanocapsules
Drug Design
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/5136
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
social impact