Background: The novel physicochemical properties of engineered nanoparticles (ENPs) make them very attractive for industrial and biomedical purposes, but concerns have been raised regarding unpredictable adverse health effects in humans. Current evidence for the risk posed by ENPs to exposed workers is the subject of this review. Aims: To perform an in-depth review of the state of art of nanoparticle exposure at work. Methods: Original articles and reviews in Pubmed and in principal databases of medical literature up to 2013 were included in the analysis. In addition, grey literature released by qualified regulatory agencies and by governmental and non-governmental organizations was also taken into consideration. Results: There are significant knowledge and technical gaps to be filled for a reliable evaluation of the risk posed for workers by ENPs. Evidence for potential workplace release of ENPs however seems substantial, and the amount of exposure may exceed the proposed occupational exposure limits (OELs). The rational use of conventional engineering measures and of protective personal equipment seems to mitigate the risk. Conclusions: A precautionary approach is recommended for workplace exposure to ENPs, until health-based OELs are developed and released by official regulatory agencies. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved.

Engineered nanoparticles at the workplace: current knowledge about workers' risk

Pietroiusti Antonio;
2014-01-01

Abstract

Background: The novel physicochemical properties of engineered nanoparticles (ENPs) make them very attractive for industrial and biomedical purposes, but concerns have been raised regarding unpredictable adverse health effects in humans. Current evidence for the risk posed by ENPs to exposed workers is the subject of this review. Aims: To perform an in-depth review of the state of art of nanoparticle exposure at work. Methods: Original articles and reviews in Pubmed and in principal databases of medical literature up to 2013 were included in the analysis. In addition, grey literature released by qualified regulatory agencies and by governmental and non-governmental organizations was also taken into consideration. Results: There are significant knowledge and technical gaps to be filled for a reliable evaluation of the risk posed for workers by ENPs. Evidence for potential workplace release of ENPs however seems substantial, and the amount of exposure may exceed the proposed occupational exposure limits (OELs). The rational use of conventional engineering measures and of protective personal equipment seems to mitigate the risk. Conclusions: A precautionary approach is recommended for workplace exposure to ENPs, until health-based OELs are developed and released by official regulatory agencies. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved.
2014
Engineered nanoparticles
Health effects
Metrics
Occupational exposure limit
Workplace exposure
Engineering
Humans
Nanoparticles
Occupational Diseases
Occupational Exposure
Risk Assessment
Workplace
Environmental Monitoring
Occupational Health
Public Health
Environmental and Occupational Health
Medicine (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/5161
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
social impact