Here, we present a one-pot procedure for the preparation of hyaluronic acid (HA) sulfonated hydrogels in aqueous alkaline medium. The HA hydrogels were crosslinked using 1,4-butanedioldiglycidyl ether (BDDE) alone, or together with N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (Bes), as a safe sulfonating agent. Conditions for the simultaneous reaction of HA with BDDE and Bes were optimized and the resulting hydrogels were characterized under different reaction times (24, 72, and 96 h). The incorporation of sulfonic groups into the HA network was proven by elemental analysis and FTIR spectroscopy and its effect on water uptake was evaluated. Compared with the non-sulfonated sample, sulfonated gels showed improved mechanical properties, with their compressive modulus increased from 15 to 70 kPa, higher stability towards hyaluronidase, and better biocompatibility to 10T1/2 fibroblasts, especially after the absorption of collagen. As main advantages, the procedure described represents an easy and reproducible methodology for the fabrication of sulfonated hydrogels, which does not require toxic chemicals and/or solvents.

Synthesis of Novel Hyaluronic Acid Sulfonated Hydrogels Using Safe Reactants: A Chemical and Biological Characterization

Consalvi, Silvia;Vuotto, Claudia;
2022-01-01

Abstract

Here, we present a one-pot procedure for the preparation of hyaluronic acid (HA) sulfonated hydrogels in aqueous alkaline medium. The HA hydrogels were crosslinked using 1,4-butanedioldiglycidyl ether (BDDE) alone, or together with N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (Bes), as a safe sulfonating agent. Conditions for the simultaneous reaction of HA with BDDE and Bes were optimized and the resulting hydrogels were characterized under different reaction times (24, 72, and 96 h). The incorporation of sulfonic groups into the HA network was proven by elemental analysis and FTIR spectroscopy and its effect on water uptake was evaluated. Compared with the non-sulfonated sample, sulfonated gels showed improved mechanical properties, with their compressive modulus increased from 15 to 70 kPa, higher stability towards hyaluronidase, and better biocompatibility to 10T1/2 fibroblasts, especially after the absorption of collagen. As main advantages, the procedure described represents an easy and reproducible methodology for the fabrication of sulfonated hydrogels, which does not require toxic chemicals and/or solvents.
2022
Collagen
Crosslinking
Fibroblasts
Hyaluronic acid
Mechanical properties
Sulfonation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/5422
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
social impact