Image-guided core needle biopsies (IG-CNB) represent a minimally invasive approach for obtaining tissue in patients with lymphadenopathy and suspected lymphoma. Despite their utility, diagnostic challenges persist, with lower efficacy compared with excisional biopsies. Our study aimed to evaluate the potential utility of incorporation of flow cytometry (FC) alongside immunohistochemistry (IHC) when performing IG-CNB for suspected lymphoproliferative diseases. Analyzing 170 consecutive cases, guided by ultrasound (n = 94) or computer tomography (n = 76), we employed a diagnostic algorithm, already established in our laboratory practice, utilizing three antibody cocktail-equipped tubes tailored for defining lymphomas, particularly those of B-cell origin. FC expedited the diagnostic process, yielding presumptive results in 87.6% of cases within 48 h, with a positive predictive value of 98%. Addition of FC to routine IHC enhanced the diagnostic rate from 91.2% to 95.3%, reducing IG-CNB failure rate by 45%, from 8.8% to 4.7%. This enhancement was particularly notable for deep-seated sites and in the setting of suspected disease recurrences. Consequently, FC emerges as a valuable adjunctive tool, allowing for the improvement of diagnostic performance, with a particular focus on the ability to quantify the expression of surface markers for targeted therapies, and holding the potential to diminish the necessity for repeat excisional biopsies subsequent to IG-CNB procedures.

Enhancing lymphoma diagnosis on core needle biopsies: Integrating immunohistochemistry with flow cytometry

Larocca, Luigi Maria;
2024-01-01

Abstract

Image-guided core needle biopsies (IG-CNB) represent a minimally invasive approach for obtaining tissue in patients with lymphadenopathy and suspected lymphoma. Despite their utility, diagnostic challenges persist, with lower efficacy compared with excisional biopsies. Our study aimed to evaluate the potential utility of incorporation of flow cytometry (FC) alongside immunohistochemistry (IHC) when performing IG-CNB for suspected lymphoproliferative diseases. Analyzing 170 consecutive cases, guided by ultrasound (n = 94) or computer tomography (n = 76), we employed a diagnostic algorithm, already established in our laboratory practice, utilizing three antibody cocktail-equipped tubes tailored for defining lymphomas, particularly those of B-cell origin. FC expedited the diagnostic process, yielding presumptive results in 87.6% of cases within 48 h, with a positive predictive value of 98%. Addition of FC to routine IHC enhanced the diagnostic rate from 91.2% to 95.3%, reducing IG-CNB failure rate by 45%, from 8.8% to 4.7%. This enhancement was particularly notable for deep-seated sites and in the setting of suspected disease recurrences. Consequently, FC emerges as a valuable adjunctive tool, allowing for the improvement of diagnostic performance, with a particular focus on the ability to quantify the expression of surface markers for targeted therapies, and holding the potential to diminish the necessity for repeat excisional biopsies subsequent to IG-CNB procedures.
2024
core needle biopsy
diagnosis
flow cytometry
non-Hodgkin lymphoma
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/5488
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact