In the “precision oncology” era the characterization of tumor genetic features is a pivotal step in cancer patients’ management. Liquid biopsy approaches, such as analysis of cell-free DNA from plasma, represent a powerful and noninvasive strategy to obtain information about the genomic status of the tumor. Sequencing-based analyses of cell-free DNA, currently performed with second generation sequencers, are extremely powerful but poorly scalable and not always accessible also due to instrumentation costs. Third generation sequencing platforms, such as Nanopore sequencers, aim at overcoming these obstacles but, unfortunately, are not designed for cell-free DNA analysis. Here we present a customized workflow to exploit low-coverage Nanopore sequencing for the detection of copy number variations from plasma of cancer patients. Whole genome molecular karyotypes of 6 lung cancer patients and 4 healthy subjects were successfully produced with as few as 2 million reads, and common lung-related copy number alterations were readily detected. This is the first successful use of Nanopore sequencing for copy number profiling from plasma DNA. In this context, Nanopore represents a reliable alternative to Illumina sequencing, with the advantages of minute instrumentation costs and extremely short analysis time. The availability of protocols for Nanopore-based cell-free DNA analysis will make this analysis finally accessible, exploiting the full potential of liquid biopsy both for research and clinical purposes.

Nanopore sequencing from liquid biopsy: analysis of copy number variations from cell-free DNA of lung cancer patients

Del Re, Marzia;
2021-01-01

Abstract

In the “precision oncology” era the characterization of tumor genetic features is a pivotal step in cancer patients’ management. Liquid biopsy approaches, such as analysis of cell-free DNA from plasma, represent a powerful and noninvasive strategy to obtain information about the genomic status of the tumor. Sequencing-based analyses of cell-free DNA, currently performed with second generation sequencers, are extremely powerful but poorly scalable and not always accessible also due to instrumentation costs. Third generation sequencing platforms, such as Nanopore sequencers, aim at overcoming these obstacles but, unfortunately, are not designed for cell-free DNA analysis. Here we present a customized workflow to exploit low-coverage Nanopore sequencing for the detection of copy number variations from plasma of cancer patients. Whole genome molecular karyotypes of 6 lung cancer patients and 4 healthy subjects were successfully produced with as few as 2 million reads, and common lung-related copy number alterations were readily detected. This is the first successful use of Nanopore sequencing for copy number profiling from plasma DNA. In this context, Nanopore represents a reliable alternative to Illumina sequencing, with the advantages of minute instrumentation costs and extremely short analysis time. The availability of protocols for Nanopore-based cell-free DNA analysis will make this analysis finally accessible, exploiting the full potential of liquid biopsy both for research and clinical purposes.
2021
cfDNA
Circulating tumor DNA
Copy number aberrations. Diagnosis
ctDNA
Metastasis
Plasma
Third generation sequencing
Case-Control Studies
Cell-Free Nucleic Acids
High-Throughput Nucleotide Sequencing
Humans
Liquid Biopsy
Lung Neoplasms
Nanopore Sequencing
Sensitivity and Specificity
Sequence Analysis
DNA
Workflow
DNA Copy Number Variations
File in questo prodotto:
File Dimensione Formato  
Nanopore sequencing.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/5979
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
social impact