Background: Phylogenetic group D Escherichia coli clones (ST69, ST393, ST405) are increasingly reported as multidrug resistant strains causing extra-intestinal infections. We aim to characterize inter- and intraclonal diversity of a broad sample (isolates from different geographic locations and origins with variable antibiotic resistance profiles, 1980-2010) and their ability to adhere and form biofilm by both a modified quantitative biofilm producing assay and Field Emission Scanning Electron Microscopy (FESEM). Results: High virulence scores were observed among ST69 (median 14/range 9-15) and ST393 (median 14/range 8-15) clones, particularly enriched in pap alleles, iha, kpsMTII-K5 and ompT, in contrast with ST405 (median 6/range 2-14) isolates, exhibiting frequently fyuA, malX and traT. All ST69 and ST393 and only two ST405 isolates were classified as ExPEC. Biofilm production was detected in two non-clinical ST69 and three ST393 isolates from different origins showing variable virulence profiles. Within each clonal group, and despite the high diversity of PFGE-types observed, isolates from different countries and recovered over large periods of time were clustered in a few groups sharing common virulence gene profiles among ST69 (n = 10 isolates) and ST393 (n = 9 isolates) (fimH-iha-iutA-kpsMTII-K5-(traT)-sat-(ompT)-papA-papEF-papGII-papC) or ST405 (n = 6 isolates) (fimH-traT-fyuA-malX). Conclusions: This study highlights the circulation of highly transmissible ST69, ST393 and ST405 variants among different settings. Biofilm production seems not to be directly correlated with their epidemiological success.
Diversity and biofilm-production ability among isolates of Escherichia coli phylogroup D belonging to ST69, ST393 and ST405 clonal groups
Vuotto C;
2013-01-01
Abstract
Background: Phylogenetic group D Escherichia coli clones (ST69, ST393, ST405) are increasingly reported as multidrug resistant strains causing extra-intestinal infections. We aim to characterize inter- and intraclonal diversity of a broad sample (isolates from different geographic locations and origins with variable antibiotic resistance profiles, 1980-2010) and their ability to adhere and form biofilm by both a modified quantitative biofilm producing assay and Field Emission Scanning Electron Microscopy (FESEM). Results: High virulence scores were observed among ST69 (median 14/range 9-15) and ST393 (median 14/range 8-15) clones, particularly enriched in pap alleles, iha, kpsMTII-K5 and ompT, in contrast with ST405 (median 6/range 2-14) isolates, exhibiting frequently fyuA, malX and traT. All ST69 and ST393 and only two ST405 isolates were classified as ExPEC. Biofilm production was detected in two non-clinical ST69 and three ST393 isolates from different origins showing variable virulence profiles. Within each clonal group, and despite the high diversity of PFGE-types observed, isolates from different countries and recovered over large periods of time were clustered in a few groups sharing common virulence gene profiles among ST69 (n = 10 isolates) and ST393 (n = 9 isolates) (fimH-iha-iutA-kpsMTII-K5-(traT)-sat-(ompT)-papA-papEF-papGII-papC) or ST405 (n = 6 isolates) (fimH-traT-fyuA-malX). Conclusions: This study highlights the circulation of highly transmissible ST69, ST393 and ST405 variants among different settings. Biofilm production seems not to be directly correlated with their epidemiological success.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.