Biofilm-growing cells show an enhanced antimicrobial tolerance with respect to the same cells growing in a free-floating way. This is due to physical or chemical diffusion barriers and increased transfer of resistance markers. Thus, tissue- and medical device-related biofilms can be considered among the leading sources of antibiotic treatment failure, causing many of the deadliest chronic infections afflicting humans nowadays. To find a satisfying way to counteract this major health threat, a great effort has been made in recent years to develop safe, effective and fast-acting anti-biofilm strategies. In this review, we summarise and evaluate the most promising tools and molecules that have demonstrated their ability to modulate steps involved in biofilm formation or to disperse pre-formed biofilms, without conferring evolutionary pressure to microorganisms.
Novel Treatment Strategies for Biofilm-Based Infections
Vuotto, Claudia;
2019-01-01
Abstract
Biofilm-growing cells show an enhanced antimicrobial tolerance with respect to the same cells growing in a free-floating way. This is due to physical or chemical diffusion barriers and increased transfer of resistance markers. Thus, tissue- and medical device-related biofilms can be considered among the leading sources of antibiotic treatment failure, causing many of the deadliest chronic infections afflicting humans nowadays. To find a satisfying way to counteract this major health threat, a great effort has been made in recent years to develop safe, effective and fast-acting anti-biofilm strategies. In this review, we summarise and evaluate the most promising tools and molecules that have demonstrated their ability to modulate steps involved in biofilm formation or to disperse pre-formed biofilms, without conferring evolutionary pressure to microorganisms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.