In brain slices, resolving fast Ca2+ fluorescence signals from submicron structures is typically achieved using 2-photon or confocal scanning microscopy, an approach that limits the number of scanned points. The novel multiplexing confocal system presented here overcomes this limitation. This system is based on a fast spinning disk, a multimode diode laser and a novel high-resolution CMOS camera. The spinning disk, running at 20 000 rpm, has custom-designed spiral pattern that maximises light collection, while rejecting out-of-focus fluorescence to resolve signals from small neuronal compartments. Using a 60× objective, the camera permits acquisitions of tens of thousands of pixels at resolutions of ~250 nm per pixel in the kHz range with 14 bits of digital depth. The system can resolve physiological Ca2+ transients from submicron structures at 20 to 40 μm below the slice surface, using the low-affinity Ca2+ indicator Oregon Green BAPTA-5N. In particular, signals at 0.25 to 1.25 kHz were resolved in single trials, or through averages of a few recordings, from dendritic spines and small parent dendrites in cerebellar Purkinje neurons. Thanks to an unprecedented combination of temporal and spatial resolution with relatively simple implementation, it is expected that this system will be widely adopted for multisite monitoring of Ca2+ signals.

A novel multisite confocal system for rapid Ca2+ imaging from submicron structures in brain slices

Latini, Andrea;
2018-01-01

Abstract

In brain slices, resolving fast Ca2+ fluorescence signals from submicron structures is typically achieved using 2-photon or confocal scanning microscopy, an approach that limits the number of scanned points. The novel multiplexing confocal system presented here overcomes this limitation. This system is based on a fast spinning disk, a multimode diode laser and a novel high-resolution CMOS camera. The spinning disk, running at 20 000 rpm, has custom-designed spiral pattern that maximises light collection, while rejecting out-of-focus fluorescence to resolve signals from small neuronal compartments. Using a 60× objective, the camera permits acquisitions of tens of thousands of pixels at resolutions of ~250 nm per pixel in the kHz range with 14 bits of digital depth. The system can resolve physiological Ca2+ transients from submicron structures at 20 to 40 μm below the slice surface, using the low-affinity Ca2+ indicator Oregon Green BAPTA-5N. In particular, signals at 0.25 to 1.25 kHz were resolved in single trials, or through averages of a few recordings, from dendritic spines and small parent dendrites in cerebellar Purkinje neurons. Thanks to an unprecedented combination of temporal and spatial resolution with relatively simple implementation, it is expected that this system will be widely adopted for multisite monitoring of Ca2+ signals.
2018
brain slices
calcium imaging
confocal microscopy
neurons
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/6577
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
social impact