Heat transfer enhancement technologies play an important role in research and industrial fields; thus, they have been widely applied to many applications as in refrigeration, automotive, aerospace, and process industry. For example, heat transfer can be passively enhanced by increasing the thermal conductivity of the working fluids, adopting nanofluids, or actively by employing impinging jets. In this paper a numerical analysis on confined impinging slot jets working with pure water or water/Al2O3 based nanofluids is presented. The flow is laminar and a constant uniform temperature is applied on the target surface. The single-phase model approach has been adopted in order to describe the nanofluid behavior and different particle volume concentrations have been considered. Moreover, simulations have been performed for different geometric ratios in order to take into account the confining effects and Reynolds numbers. The behavior of the system has been analyzed in terms of average and local convective heat transfer coefficient, Nusselt number, and required pumping power profiles. Correlations for stagnation point and average Nusselt number for 100≤Re≤400, 0%≤ϕ≤5% and 4≤H/W≤10 are provided.
Thermal and fluid dynamic behaviors of confined laminar impinging slot jets with nanofluids
Di Lorenzo, Giuseppe
2016-01-01
Abstract
Heat transfer enhancement technologies play an important role in research and industrial fields; thus, they have been widely applied to many applications as in refrigeration, automotive, aerospace, and process industry. For example, heat transfer can be passively enhanced by increasing the thermal conductivity of the working fluids, adopting nanofluids, or actively by employing impinging jets. In this paper a numerical analysis on confined impinging slot jets working with pure water or water/Al2O3 based nanofluids is presented. The flow is laminar and a constant uniform temperature is applied on the target surface. The single-phase model approach has been adopted in order to describe the nanofluid behavior and different particle volume concentrations have been considered. Moreover, simulations have been performed for different geometric ratios in order to take into account the confining effects and Reynolds numbers. The behavior of the system has been analyzed in terms of average and local convective heat transfer coefficient, Nusselt number, and required pumping power profiles. Correlations for stagnation point and average Nusselt number for 100≤Re≤400, 0%≤ϕ≤5% and 4≤H/W≤10 are provided.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.