Progressive decline of pancreatic beta cell function is central to the pathogenesis of type 2 diabetes. Protein phosphorylation regulates glucose-stimulated insulin secretion from beta cells, but how signaling networks are remodeled in diabetic islets in vivo remains unknown. Using high-sensitivity mass spectrometry-based proteomics, we quantified 6,500 proteins and 13,000 phosphopeptides in islets of obese diabetic mice and matched controls, revealing drastic remodeling of key kinase hubs and signaling pathways. Integration with a literature-derived signaling network implicated GSK3 kinase in the control of the beta cell-specific transcription factor PDX1. Deep phosphoproteomic analysis of human islets chronically treated with high glucose demonstrated a conserved glucotoxicity-dependent role of GSK3 kinase in regulating insulin secretion. Remarkably, the ability of beta cells to secrete insulin in response to glucose was rescued almost completely by pharmacological inhibition of GSK3. Thus, our resource enables investigation of mechanisms and drug targets in type 2 diabetes.

Phosphoproteomics Reveals the GSK3-PDX1 Axis as a Key Pathogenic Signaling Node in Diabetic Islets

Reggio A;
2019-01-01

Abstract

Progressive decline of pancreatic beta cell function is central to the pathogenesis of type 2 diabetes. Protein phosphorylation regulates glucose-stimulated insulin secretion from beta cells, but how signaling networks are remodeled in diabetic islets in vivo remains unknown. Using high-sensitivity mass spectrometry-based proteomics, we quantified 6,500 proteins and 13,000 phosphopeptides in islets of obese diabetic mice and matched controls, revealing drastic remodeling of key kinase hubs and signaling pathways. Integration with a literature-derived signaling network implicated GSK3 kinase in the control of the beta cell-specific transcription factor PDX1. Deep phosphoproteomic analysis of human islets chronically treated with high glucose demonstrated a conserved glucotoxicity-dependent role of GSK3 kinase in regulating insulin secretion. Remarkably, the ability of beta cells to secrete insulin in response to glucose was rescued almost completely by pharmacological inhibition of GSK3. Thus, our resource enables investigation of mechanisms and drug targets in type 2 diabetes.
File in questo prodotto:
File Dimensione Formato  
Sacco2019.pdf

non disponibili

Licenza: Dominio pubblico
Dimensione 3.29 MB
Formato Adobe PDF
3.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/7012
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
social impact