The last half a century has seen spectacular progresses in computing and modelling in a variety of fields, applications, and methodologies. Over the same period, a cross-disciplinary field known as sensitivity analysis has been making its first steps, evolving from the design of experiments for laboratory or field studies, also called ‘in-vivo’, to the so-called experiments ‘in-silico’. Some disciplines were quick to realize the importance of sensitivity analysis, whereas others are still lagging behind. Major tensions within the evolution of this discipline arise from the interplay between local vs global perspectives in the analysis as well as the juxtaposition of the mathematical complexification and the desire for practical applicability. In this work, we retrace these main steps with some attention to the methods and through a bibliometric survey to assess the accomplishments of sensitivity analysis and to identify the potential for its future advancement with a focus on relevant disciplines, such as the environmental field. © 2024 The Authors

An annotated timeline of sensitivity analysis

Lachi, Alessio
;
2024-01-01

Abstract

The last half a century has seen spectacular progresses in computing and modelling in a variety of fields, applications, and methodologies. Over the same period, a cross-disciplinary field known as sensitivity analysis has been making its first steps, evolving from the design of experiments for laboratory or field studies, also called ‘in-vivo’, to the so-called experiments ‘in-silico’. Some disciplines were quick to realize the importance of sensitivity analysis, whereas others are still lagging behind. Major tensions within the evolution of this discipline arise from the interplay between local vs global perspectives in the analysis as well as the juxtaposition of the mathematical complexification and the desire for practical applicability. In this work, we retrace these main steps with some attention to the methods and through a bibliometric survey to assess the accomplishments of sensitivity analysis and to identify the potential for its future advancement with a focus on relevant disciplines, such as the environmental field. © 2024 The Authors
2024
Design of experiments
Global sensitivity analysis
History of sensitivity analysis
Local sensitivity analysis
Monte Carlo
File in questo prodotto:
File Dimensione Formato  
11.pdf

accesso aperto

Licenza: Creative commons
Dimensione 2.72 MB
Formato Adobe PDF
2.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/7088
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
social impact