Among the known causative genes of familial ALS, SOD1 mutation is one of the most common. It encodes for the ubiquitous detoxifying copper/zinc binding SOD1 enzyme, whose mutations selectively cause motor neuron death, although the mechanisms are not as yet clear. What is known is that mutant-mediated toxicity is not caused by loss of its detoxifying activity but by a gain-of-function. In order to better understand the pathogenic mechanisms of SOD1 mutation, a human induced pluripotent stem cell (hiPSC) line was generated from the somatic cells of a female patient carrying a missense variation in SOD1 (L145F).
Generation of an induced pluripotent stem cell line, CSSi011-A (6534), from an Amyotrophic lateral sclerosis patient with heterozygous L145F mutation in SOD1 gene
Rosati J.
2020-01-01
Abstract
Among the known causative genes of familial ALS, SOD1 mutation is one of the most common. It encodes for the ubiquitous detoxifying copper/zinc binding SOD1 enzyme, whose mutations selectively cause motor neuron death, although the mechanisms are not as yet clear. What is known is that mutant-mediated toxicity is not caused by loss of its detoxifying activity but by a gain-of-function. In order to better understand the pathogenic mechanisms of SOD1 mutation, a human induced pluripotent stem cell (hiPSC) line was generated from the somatic cells of a female patient carrying a missense variation in SOD1 (L145F).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Danzi_Generation_2020.pdf
accesso aperto
Licenza:
Dominio pubblico
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.