Cerium oxide nanoparticles (nanoceria), biocompatible multifunctional nanozymes exerting unique biomimetic activities, mimic superoxide-dismutase and catalase through a self-regenerating, energy-free redox cycle driven by Ce3+/4+ valence switch. Additional redox-independent UV-filter properties render nanoceria ideal multitask solar screens, shielding from UV exposure, simultaneously protecting tissues from UV-oxidative damage. Here, we report that nanoceria favour basal proliferation of primary normal keratinocytes, and protects them from UVB-induced DNA damage, mutagenesis, and apoptosis, minimizing cell loss and accelerating recovery with flawless cells. Similar cell-protective effects were found on irradiated noncancerous, but immortalized, p53-null HaCaT keratinocytes, with the notable exception that here, nanoceria do not accelerate basal HaCaT proliferation. Notably, nanoceria protect HaCaT from oxidative stress induced by irradiated titanium dioxide nanoparticles, a major active principle of commercial UV-shielding lotions, thus neutralizing their most critical side effects. The intriguing combination of nanoceria multiple beneficial properties opens the way for smart and safer containment measures of UV-induced skin damage and carcinogenesis.

Safe-Shields: Basal and Anti-UV Protection of Human Keratinocytes by Redox-Active Cerium Oxide Nanoparticles Prevents UVB-Induced Mutagenesis

Bruni E.;
2023-01-01

Abstract

Cerium oxide nanoparticles (nanoceria), biocompatible multifunctional nanozymes exerting unique biomimetic activities, mimic superoxide-dismutase and catalase through a self-regenerating, energy-free redox cycle driven by Ce3+/4+ valence switch. Additional redox-independent UV-filter properties render nanoceria ideal multitask solar screens, shielding from UV exposure, simultaneously protecting tissues from UV-oxidative damage. Here, we report that nanoceria favour basal proliferation of primary normal keratinocytes, and protects them from UVB-induced DNA damage, mutagenesis, and apoptosis, minimizing cell loss and accelerating recovery with flawless cells. Similar cell-protective effects were found on irradiated noncancerous, but immortalized, p53-null HaCaT keratinocytes, with the notable exception that here, nanoceria do not accelerate basal HaCaT proliferation. Notably, nanoceria protect HaCaT from oxidative stress induced by irradiated titanium dioxide nanoparticles, a major active principle of commercial UV-shielding lotions, thus neutralizing their most critical side effects. The intriguing combination of nanoceria multiple beneficial properties opens the way for smart and safer containment measures of UV-induced skin damage and carcinogenesis.
2023
cerium oxide nanoparticles
DNA damage
keratinocytes
mutagenesis
SOD and catalase mimetic
UV exposure
UV protection
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/9159
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
social impact