Introduction: Primary neurological disorders are notoriously debilitating and deadly, and over the past four decades stem cell therapy has emerged as a promising treatment. Translation of stem cell therapies from the bench to the clinic requires a better understanding of delivery protocols, safety profile, and efficacy in each disease. Areas covered: In this review, benefits and risks of intracerebral stem cell transplantation are presented for consideration. Milestone discoveries in stem cell applications are reviewed to examine the efficacy and safety of intracerebral stem cell transplant therapy for disorders of the central nervous system and inform design of translatable protocols for clinically feasible stem cell-based treatments. Expert commentary: Intracerebral administration, compared to peripheral delivery, is more invasive and carries the risk of open brain surgery. However, direct cell implantation bypasses the blood–brain barrier and reduces the first-pass effect, effectively increasing the therapeutic cell deposition at its intended site of action. These benefits must be weighed with the risk of graft-versus-host immune response. Rigorous clinical trials are underway to assess the safety and efficacy of intracerebral transplants, and if successful will lead to widely available stem cell therapies for neurologic diseases in the coming years.

An update on intracerebral stem cell grafts

Russo Eleonora;
2018-01-01

Abstract

Introduction: Primary neurological disorders are notoriously debilitating and deadly, and over the past four decades stem cell therapy has emerged as a promising treatment. Translation of stem cell therapies from the bench to the clinic requires a better understanding of delivery protocols, safety profile, and efficacy in each disease. Areas covered: In this review, benefits and risks of intracerebral stem cell transplantation are presented for consideration. Milestone discoveries in stem cell applications are reviewed to examine the efficacy and safety of intracerebral stem cell transplant therapy for disorders of the central nervous system and inform design of translatable protocols for clinically feasible stem cell-based treatments. Expert commentary: Intracerebral administration, compared to peripheral delivery, is more invasive and carries the risk of open brain surgery. However, direct cell implantation bypasses the blood–brain barrier and reduces the first-pass effect, effectively increasing the therapeutic cell deposition at its intended site of action. These benefits must be weighed with the risk of graft-versus-host immune response. Rigorous clinical trials are underway to assess the safety and efficacy of intracerebral transplants, and if successful will lead to widely available stem cell therapies for neurologic diseases in the coming years.
2018
amyotrophic lateral sclerosis
Huntington’s disease
multi-system atrophy
multiple sclerosis
neuroprotection
Parkinson’s disease
Stem cells
stroke
traumatic brain injury
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14245/9277
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
social impact