Brody disease is a rare muscle disorder characterized by exercise-induced impairment in muscle relaxation, due to a markedly reduced influx of calcium ions in the sarcoplasmic reticulum. A subset of autosomal recessive families harbour mutations in the ATP2A1 gene, encoding the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase (SERCA1). Rare autosomal dominant families have been described, in which ATP2A1 was excluded as the causative gene, further supporting genetic heterogeneity. We report four individuals from a three-generation Italian family with a clinical phenotype of Brody disease, in which linkage analysis excluded ATP2A1 as the responsible gene. The disease cosegregates in an autosomal dominant fashion with an apparently balanced constitutional chromosome translocation (2;7)(p11.2;p12.1), suggesting a causal relationship between the rearrangement and the phenotype. FISH analysis using YAC and PAC clones as probes refined the breakpoint regions to genomic segments of about 164 and 120 kb, respectively, providing a possible clue to pinpoint the location of a novel gene responsible for this rare muscle disorder. © 2004 Nature Publishing Group. All rights reserved.
Autosomal dominant Brody disease cosegragates with a chromosomal (2;7)(p11.2;p12.1) trranslocation in an Italian family
Novelli, Antonio;
2004-01-01
Abstract
Brody disease is a rare muscle disorder characterized by exercise-induced impairment in muscle relaxation, due to a markedly reduced influx of calcium ions in the sarcoplasmic reticulum. A subset of autosomal recessive families harbour mutations in the ATP2A1 gene, encoding the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase (SERCA1). Rare autosomal dominant families have been described, in which ATP2A1 was excluded as the causative gene, further supporting genetic heterogeneity. We report four individuals from a three-generation Italian family with a clinical phenotype of Brody disease, in which linkage analysis excluded ATP2A1 as the responsible gene. The disease cosegregates in an autosomal dominant fashion with an apparently balanced constitutional chromosome translocation (2;7)(p11.2;p12.1), suggesting a causal relationship between the rearrangement and the phenotype. FISH analysis using YAC and PAC clones as probes refined the breakpoint regions to genomic segments of about 164 and 120 kb, respectively, providing a possible clue to pinpoint the location of a novel gene responsible for this rare muscle disorder. © 2004 Nature Publishing Group. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.