Complex chromosomal rearrangements (CCRs) are structural aberrations involving more than 2 chromosomal breakpoints. They are associated with different outcomes depending on the deletion/duplication of genomic material, gene disruption, or position effects. Balanced CCRs can also undergo missegregation during meiotic division, leading to unbalanced derivative chromosomes and, in some cases, to affected offspring. We report on a patient presenting with developmental and speech delay, growth retardation, microcephaly, hypospadias, and dysmorphic features, harboring an interstitial 10q21.1q23.31 duplication, due to recombination of a paternal CCR. Application of several cytogenetic and molecular techniques allowed determining the biological bases of the rearrangement, understanding the underlying chromosomal mechanism, and assessing the reproductive risk. © 2017 S. Karger AG, Basel.
Interstitial 10q21.1q23.31 Duplication due to Meiotic Recombination of a Paternal Balanced Complex Rearrangement: Cytogenetic and Molecular Characterization
Novelli, Antonio
2017-01-01
Abstract
Complex chromosomal rearrangements (CCRs) are structural aberrations involving more than 2 chromosomal breakpoints. They are associated with different outcomes depending on the deletion/duplication of genomic material, gene disruption, or position effects. Balanced CCRs can also undergo missegregation during meiotic division, leading to unbalanced derivative chromosomes and, in some cases, to affected offspring. We report on a patient presenting with developmental and speech delay, growth retardation, microcephaly, hypospadias, and dysmorphic features, harboring an interstitial 10q21.1q23.31 duplication, due to recombination of a paternal CCR. Application of several cytogenetic and molecular techniques allowed determining the biological bases of the rearrangement, understanding the underlying chromosomal mechanism, and assessing the reproductive risk. © 2017 S. Karger AG, Basel.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.