Filamin C is a protein specifically expressed in myocytes and cardiomyocytes and is involved in several biological functions, including sarcomere contractile activity, signaling, cellular adhesion, and repair. FLNC variants are associated with different disorders ranging from striated muscle (myofibrillar distal or proximal) myopathy to cardiomyopathies (CMPs) (restrictive, hypertrophic, and dilated), or both. The outcome depends on functional consequences of the detected variants, which result either in FLNC haploinsufficiency or in an aberrant protein, the latter affecting sarcomere structure leading to protein aggregates. Cardiac manifestations of filaminopathies are most often described as adult onset CMPs and limited reports are available in children or on other cardiac spectrums (congenital heart defects—CHDs, or arrhythmias). Here we report on 13 variants in 14 children (2.8%) out of 500 pediatric patients with early-onset different cardiac features ranging from CMP to arrhythmias and CHDs. In one patient, we identified a deletion encompassing FLNC detected by microarray, which was overlooked by next generation sequencing. We established a potential genotype–phenotype correlation of the p.Ala1186Val variant in severe and early-onset restrictive cardiomyopathy (RCM) associated with a limb-girdle defect (two new patients in addition to the five reported in the literature). Moreover, in three patients (21%), we identified a relatively frequent finding of long QT syndrome (LQTS) associated with RCM (n = 2) and a hypertrabeculated left ventricle (n = 1). RCM and LQTS in children might represent a specific red flag for FLNC variants. Further studies are warranted in pediatric cohorts to delineate potential expanding phenotypes related to FLNC. © 2022 by the authors.
Cardiovascular Involvement in Pediatric FLNC Variants: A Case Series of Fourteen Patients
Novelli, Antonio;
2022-01-01
Abstract
Filamin C is a protein specifically expressed in myocytes and cardiomyocytes and is involved in several biological functions, including sarcomere contractile activity, signaling, cellular adhesion, and repair. FLNC variants are associated with different disorders ranging from striated muscle (myofibrillar distal or proximal) myopathy to cardiomyopathies (CMPs) (restrictive, hypertrophic, and dilated), or both. The outcome depends on functional consequences of the detected variants, which result either in FLNC haploinsufficiency or in an aberrant protein, the latter affecting sarcomere structure leading to protein aggregates. Cardiac manifestations of filaminopathies are most often described as adult onset CMPs and limited reports are available in children or on other cardiac spectrums (congenital heart defects—CHDs, or arrhythmias). Here we report on 13 variants in 14 children (2.8%) out of 500 pediatric patients with early-onset different cardiac features ranging from CMP to arrhythmias and CHDs. In one patient, we identified a deletion encompassing FLNC detected by microarray, which was overlooked by next generation sequencing. We established a potential genotype–phenotype correlation of the p.Ala1186Val variant in severe and early-onset restrictive cardiomyopathy (RCM) associated with a limb-girdle defect (two new patients in addition to the five reported in the literature). Moreover, in three patients (21%), we identified a relatively frequent finding of long QT syndrome (LQTS) associated with RCM (n = 2) and a hypertrabeculated left ventricle (n = 1). RCM and LQTS in children might represent a specific red flag for FLNC variants. Further studies are warranted in pediatric cohorts to delineate potential expanding phenotypes related to FLNC. © 2022 by the authors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.