BACKGROUND: Ectodermal dysplasias (EDs) are a large and complex group of disorders affecting the ectoderm-derived organs; the clinical and genetic heterogeneity of these conditions renders an accurate diagnosis more challenging. The aim of this study is to demonstrate the clinical utility of a targeted resequencing panel through enhancing the molecular and clinical diagnosis of EDs. Given the recent developments in gene and protein-based therapies for X-linked hypohidrotic ectodermal dysplasia, there is a re-emerging interest in identifying the genetic basis of EDs and the respective phenotypic presentations, in an aim to facilitate potential treatments for affected families. METHODS: We assessed seventeen individuals, from three unrelated families, who presented with diverse phenotypes suggestive of ED. An extensive multidisciplinary clinical evaluation was performed followed by a targeted exome resequencing panel (including genes that are known to cause EDs). MiSeqTMdata software was used, variants with Qscore >30 were accepted. RESULTS: Three different previously reported hemizygous EDA mutations were found in the families. However, a complete genotype-phenotype correlation could not be established, neither in our patients nor in the previously reported patients. CONCLUSIONS: Targeted exome resequencing can provide a rapid and accurate diagnosis of EDs, while further contributing to the existing ED genetic data. Moreover, the identification of the disease-causing mutation in an affected family is crucial for proper genetic counseling and the establishment of a genotype-phenotype correlation which will subsequently provide the affected individuals with a more suitable treatment plan. © 2023 EDIZIONI MINERVAMEDICA.
Next generation sequencing panel target genes: possible diagnostic tool for ectodermal dysplasia related diseases
Novelli, Antonio;
2023-01-01
Abstract
BACKGROUND: Ectodermal dysplasias (EDs) are a large and complex group of disorders affecting the ectoderm-derived organs; the clinical and genetic heterogeneity of these conditions renders an accurate diagnosis more challenging. The aim of this study is to demonstrate the clinical utility of a targeted resequencing panel through enhancing the molecular and clinical diagnosis of EDs. Given the recent developments in gene and protein-based therapies for X-linked hypohidrotic ectodermal dysplasia, there is a re-emerging interest in identifying the genetic basis of EDs and the respective phenotypic presentations, in an aim to facilitate potential treatments for affected families. METHODS: We assessed seventeen individuals, from three unrelated families, who presented with diverse phenotypes suggestive of ED. An extensive multidisciplinary clinical evaluation was performed followed by a targeted exome resequencing panel (including genes that are known to cause EDs). MiSeqTMdata software was used, variants with Qscore >30 were accepted. RESULTS: Three different previously reported hemizygous EDA mutations were found in the families. However, a complete genotype-phenotype correlation could not be established, neither in our patients nor in the previously reported patients. CONCLUSIONS: Targeted exome resequencing can provide a rapid and accurate diagnosis of EDs, while further contributing to the existing ED genetic data. Moreover, the identification of the disease-causing mutation in an affected family is crucial for proper genetic counseling and the establishment of a genotype-phenotype correlation which will subsequently provide the affected individuals with a more suitable treatment plan. © 2023 EDIZIONI MINERVAMEDICA.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.