Life-threatening "breakthrough"cases of critical COVID-19 are attributed to poor or waning antibody (Ab) response to SARS-CoV-2 vaccines in individuals already at risk. Preexisting auto-Abs neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; their contribution to hypoxemic breakthrough cases in vaccinated people is unknown. We studied a cohort of 48 individuals (aged 20 to 86 years) who received two doses of a messenger RNA (mRNA) vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Ab levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal Ab response to the vaccine. Among them, 10 (24%) had auto-Abs neutralizing type I IFNs (aged 43 to 86 years). Eight of these 10 patients had auto-Abs neutralizing both IFN-a2 and IFN-w, whereas two neutralized IFN-w only. No patient neutralized IFN-b. Seven neutralized type I IFNs at 10 ng/ml and three at 100 pg/ml only. Seven patients neutralized SARS-CoV-2 D614G and Delta efficiently, whereas one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only type I IFNs at 100 pg/ml neutralized both D614G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating Abs capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a notable proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population. Copyright © 2023 The Authors, some rights reserved.
Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs
Novelli, Antonio;
2023-01-01
Abstract
Life-threatening "breakthrough"cases of critical COVID-19 are attributed to poor or waning antibody (Ab) response to SARS-CoV-2 vaccines in individuals already at risk. Preexisting auto-Abs neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; their contribution to hypoxemic breakthrough cases in vaccinated people is unknown. We studied a cohort of 48 individuals (aged 20 to 86 years) who received two doses of a messenger RNA (mRNA) vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Ab levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal Ab response to the vaccine. Among them, 10 (24%) had auto-Abs neutralizing type I IFNs (aged 43 to 86 years). Eight of these 10 patients had auto-Abs neutralizing both IFN-a2 and IFN-w, whereas two neutralized IFN-w only. No patient neutralized IFN-b. Seven neutralized type I IFNs at 10 ng/ml and three at 100 pg/ml only. Seven patients neutralized SARS-CoV-2 D614G and Delta efficiently, whereas one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only type I IFNs at 100 pg/ml neutralized both D614G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating Abs capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a notable proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population. Copyright © 2023 The Authors, some rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.